Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
suboy
Xem chi tiết
Nguyễn Tuấn Khải
Xem chi tiết
Nguyễn Ngọc Quý
30 tháng 4 2015 lúc 17:04

Ta có : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{50}\)

\(=1-\frac{1}{50}=\frac{49}{50}\)

Vì \(\frac{49}{50}

nguyenvanhoang
Xem chi tiết
bao quynh Cao
25 tháng 3 2015 lúc 11:01

Gọi \(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

          \(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

           \(A=1-\frac{1}{100}\)(TỐI GIẢN CÁC PHÂN SỐ LẬP LẠI )

           \(A=\frac{99}{100}

Đỗ Lê Anh Duy
10 tháng 1 2022 lúc 7:44

Ta có \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
        \(\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{100-99}{99.100}\)
        = \(\frac{2}{1.2}-\frac{1}{1.2}+\frac{3}{2.3}-\frac{2}{2.3}+\frac{4}{3.4}-\frac{3}{3.4}+...+\frac{100}{99.100}-\frac{99}{99.100}\)
        =\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
        =   \(1-\frac{1}{100}\)
        =     \(\frac{99}{100}\)
Vậy\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}< 1\)

Khách vãng lai đã xóa
nguyễn duy hưng
Xem chi tiết

vi /chia au cong thi cha be hon a

Lê Cao Mai Anh
11 tháng 4 2018 lúc 19:17

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)

Vậy \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)< 1

~~~

#Sunrise

Kiên-Messi-8A-Boy2k6
11 tháng 4 2018 lúc 19:17

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}< 1\)

\(\Rightarrowđpcm\)

trần tâm tâm
Xem chi tiết
Vũ Thị Kim Oanh
Xem chi tiết
Nguyễn Thị BÍch Hậu
5 tháng 7 2015 lúc 16:01

\(A=\frac{1}{2}+\frac{1}{12}+...+\frac{1}{9900}>\frac{1}{2}+\frac{1}{12}=\frac{7}{12}\)

\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}=\left(1-\frac{1}{2}+\frac{1}{3}\right)-\left(\frac{1}{4}-\frac{1}{5}\right)-...-\left(\frac{1}{98}-\frac{1}{99}\right)-\frac{1}{100}

Vũ Anh Đức
4 tháng 10 2019 lúc 20:57

Ta có: A=1/1.2+1/3.4+1/5.6+...+1/99.100

             =1-1/2+1/3-1/4+1/5-1/6+...+1/99-1/100

             =1+1/2+1/3+1/4+1/5+1/6+...+1/99+1/100-2(1/2+1/4+1/6+...+1/100)

             =1+1/2+1/3+1/4+1/5+1/6+...+1/99+1/100-(1+1/2+1/3+1/4+...+1/50)

             =1/26+1/27+1/28+...+1/100)

Do đó A=(1/51+1/52+...+1/75)+(1/76+1/77+...+1/100)

Ta có 1/51>1/52>...>1/75 và 1/76>1/77>...>1/100 nên

A>1/75.25+1/100.25=1/3+1/4=7/12

A<1/51.25+1/76.25<1/50.25+1/75.25=1/2+1/3=5/6

Vậy nên 7/12<A<5/6

Nguyễn Trần Minh Thư
Xem chi tiết
SKT_ Lạnh _ Lùng
7 tháng 4 2016 lúc 19:45

1/1.2+1/3.4+1/5.6+...+1/49.50=1/26+1/27+...+1/50

=1/1-1/2+1/3-1/4+...+1/49-1/50

=(1/1+1/3+...+1/49)-(1/2+1/4+...+1/50)

=(1/1+1/2+1/3+...+1/49+1/50)-2(1/2+1/4+...+1/50)

=1/1+1/2+1/3+...+1/50-1-1/2-1/3-...-1/25

=1/26+1/27+...+1/50 (đpcm)

bỏ mặc tất cả
7 tháng 4 2016 lúc 19:50

1/1.2+1/3.4+1/5.6+...+1/49.50=1/26+1/27+...+1/50

=1/1-1/2+1/3-1/4+...+1/49-1/50

=(1/1+1/3+...+1/49)-(1/2+1/4+...+1/50)

=(1/1+1/2+1/3+...+1/49+1/50)-2(1/2+1/4+...+1/50)

=1/1+1/2+1/3+...+1/50-1-1/2-1/3-...-1/25

=1/26+1/27+...+1/50 (đpcm)

Nguyễn Tuấn Minh
7 tháng 4 2016 lúc 19:50

Hình như sai đề rồi bạn ạ

SKT_ Lạnh _ Lùng
Xem chi tiết
Triet Nguyen
8 tháng 4 2016 lúc 11:44

what ....... what .......what 

SKT_ Lạnh _ Lùng
8 tháng 4 2016 lúc 11:44

1/1.2+1/3.4+1/5.6+...+1/49.50=1/26+1/27+...+1/50

=1/1-1/2+1/3-1/4+...+1/49-1/50

=(1/1+1/3+...+1/49)-(1/2+1/4+...+1/50)

=(1/1+1/2+1/3+...+1/49+1/50)-2(1/2+1/4+...+1/50)

=1/1+1/2+1/3+...+1/50-1-1/2-1/3-...-1/25

=1/26+1/27+...+1/50 (đpcm)

ỦNg hộ nhà mih lại cho !!!

SKT_ Lạnh _ Lùng
8 tháng 4 2016 lúc 11:45

1/1.2+1/3.4+1/5.6+...+1/49.50=1/26+1/27+...+1/50

=1/1-1/2+1/3-1/4+...+1/49-1/50

=(1/1+1/3+...+1/49)-(1/2+1/4+...+1/50)

=(1/1+1/2+1/3+...+1/49+1/50)-2(1/2+1/4+...+1/50)

=1/1+1/2+1/3+...+1/50-1-1/2-1/3-...-1/25

=1/26+1/27+...+1/50 (đpcm)

Ung ho nha mih lai cho

Tâm Lê
Xem chi tiết
Adorable Angel
8 tháng 4 2017 lúc 8:38

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}< 1\)

Ta có: \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}< 1\)

=\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}< 1\)

= \(\dfrac{1}{1}-\dfrac{1}{50}< 1\)

= \(\dfrac{50}{50}+\dfrac{-1}{50}< 1\)

= \(\dfrac{49}{50}< 1\)

Vậy \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}< 1\)

Sầu Thiên Thu
8 tháng 4 2017 lúc 8:37

1/1.2 = 2 đã lớn hơn 1 rồi @@

Bui Dinh Quang
Xem chi tiết