Cho tam giác ABC có O là giao điểm các đường trung trực của tam giác. Biết BO là tia phân giác của góc A B C ^ . Chứng minh:
a) ∆ B O A = ∆ B O C ;
b) BO là trung trực của AC.
cho tam giác ABC có O là giao điểm của các đường trung trực trong tam giác. Biết BO là tia phân giác của góc ABC. Chứng minh
a,tam giác BOA=tam giác BOC
b, BO là trung trục AC
a: Xét ΔABC có
O là giao điểm của các đường trung trực
nên OA=OB=OC
Xét ΔOAB có OA=OB
nên ΔOAB cân tại O
Suy ra: \(\widehat{AOB}=\dfrac{180^0-\widehat{ABO}}{2}\)
mà \(\widehat{ABO}=\widehat{CBO}\)
nên \(\widehat{AOB}=\dfrac{180^0-\widehat{CBO}}{2}\left(1\right)\)
Xét ΔOBC có OB=OC
nên ΔOBC cân tại O
Suy ra: \(\widehat{BOC}=\dfrac{180^0-\widehat{OBC}}{2}\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra \(\widehat{AOB}=\widehat{COB}\)
Xét ΔBOA và ΔBOC có
\(\widehat{AOB}=\widehat{COB}\)
OB chung
\(\widehat{ABO}=\widehat{CBO}\)
Do đó: ΔBOA=ΔBOC
b: Ta có: ΔBOA=ΔBOC
nên BA=BC
Ta có: BA=BC
nên B nằm trên đường trung trực của AC\(\left(3\right)\)
Ta có: OA=OC
nên O nằm trên đường trung trực của AC\(\left(4\right)\)
Từ \(\left(3\right),\left(4\right)\) suy ra BO là đường trung trực của AC
1)CHO TG ABC VUÔNG TẠI A.VẼ AH VUÔNG VỚI BC TẠI H.TIA PHÂN GIÁC GÓC HAB CẮT BC TẠI D.TIA PHÂN GIÁC GÓC HAC CẮT BC TẠI E.
CM: GIAO ĐIỂM CÁC ĐƯỜNG PHÂN GIÁC CỦA TAM GIÁC ABC LÀ GIAO ĐIỂM CÁC ĐƯỜNG TRUNG TRỰC CỦA TAM GIÁC ADE.
2)CHO TAM GIÁC ABC CÓ AC>AB.TRÊN CA LẤY E SAO CHO CE=AB.CÁC ĐƯỜNG TRUNG TRỰC CỦA BE VÀ AC CẮT NHAU TẠI O.
CM:A)TAM GIÁC AOB=TAM GIÁC AOC
B)AO LÀ TIA PHÂN GIÁC CỦA GÓC BAC
3)CHO TAM GIÁC ABC ĐỀU.TRÊN AB,BC,AC LẤY CÁC ĐIỂM D,E,F SAO CHO AD=BE=CF.
CM:A)TAM GIÁC DEF ĐỀU.
B)GỌI O LÀ GIAO ĐIỂM CÁC ĐƯỜNG TRUNG TRỰC CỦA TAM GIÁC ABC.CM:Ó CŨNG LÀ GIAO ĐIỂM CÁC ĐƯỜNG TRUNG TRỰC CỦA TAM GIÁC DEF
mau lên giùm mình đê các bạn ơi.mau,mau đê
1. Cho tam giác đều ABC. Gọi M là trung điểm của BC. Trên cạnh AB lấy một điểm D. Tia DM cắt AC tại E. Cmr MD<ME
2. Cho tam giác ABC cân tại A, góc A bằng 108 độ. Gọi O là giao điểm của các đường trung trực, I là giao điểm của các tia phân giác. Cmr BC là đường trung trực của OI
3. Cho tam giác ABC có góc B lớn hơn góc C, hai đường cao BD và CE. Cmr AC - AB > CE - BD
Bạn tự vẽ hình nhé. Mình giải thôi.
1)Bạn chia 2 TH.
a) Góc MDB lớn hơn hoac bằng 60 độ
=>MD<MB mà ME>MC=MB
=>MD<ME.
b) Góc MDB nhỏ hơn 60 độ.
=> MD giao CA tại E .
Dễ dàng cminh DM<ME.
2) Ta có tam giác ABC cân tại A => AI là phân giác cũng là trung trực BC
=> AI trung trực BC. Mà AO là trung trục BC.
=> AI trùng AO.
=>OI là trung trực BC
Đè bài cần xem lại nhé.
3)Ta có góc B > góc C => AC>AB
Có AC đối dienj góc vuông trong tam giác vuông AEC => AC>CE
Tương tự AB>BD
Tất cả các điều => AC-AB>CE-BD
Cho tam giác ABC có K là giao điểm của các đường phân giác, O là giao điểm các đường trung trực , BC là đường trung trực của OK. Tính các góc cua tam giác ABC.
Cho tam giác ABC cân tại A, O là giao điểm các đường trung trực. Trên tia đối của tia AB và CA lấy điểm M và N sao cho AM = CN
a) Chứng minh góc OAB = góc OCA
b) Chứng minh tam giác AOM = tam giác CON
c) Gọi I là giao điểm hai đường trung trực của OM và ON. Chứng minh OI là phân giác của góc MON
Cho tam giác ABC cân (AB = AC). O là giao điểm của 3 đường trung trực của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA lấy 2 điểm M, N sao cho AM = CN. Chứng minh:
a, Góc OAB = góc OCA
b, Tam giác OAM = Tam giác CON
c, Hai đường trung trực OM; ON cắt nhau tại I. Chứng minh: OI là phân giác của góc MON
Mn giúp mk bài này vs ạ
Bài toán 1: Cho tam giác ABC cân tại A, trung tuyến AM. Đường trung trực của AB cắt AM ở O. Chứng minh rằng điểm 0 cách đều 3 đỉnh của tam giác ABC.
Bài toán 2: Cho tam giác cân ABC (AB = AC). Đường trung trực của AC cắt AB ở D. Biết CD là tia phân giác của góc ACB. Tính các góc của tam giác ABC.
Bài toán 3: Cho tam giác đều ABC. Trên các cạnh AB, BC, CA lấy theo thứ tự ba điểm M, N, P sao cho AM = BN = CP.
a) Chứng minh tam giác MNP là tam giác đều b) Gọi O là giao điểm các đường trung trực của tam giác ABC. Chứng minh rằng 0 cũng là
giao điểm của các đường trung trực của tam giác MNP.
im đi Lê Minh Phương
kệ mẹ tao, thằng điên
Cho tam giác ABC cân tại A. Gọi O là giao điểm các đường trung trực của tam giác. Trên tia đối của tia AB và CA lấy theo thứ tự hai điểm M và N sao cho AM=CN
a, Chứng minh góc OAB = góc OCA
b, Chứng minh tam giác AOM = tam giác CON
c, Gọi I là giao điểm hai đường trung trực của OM và ON. Chứng minh OI là tia phân giác của góc MON
Cho tam giác ABC vuong tại a vẽ AH vuông góc BC tại H. Tia phân giác của góc HAB cắt BC ở D, tia phân giác của góc HAC cắt bc ở E. Chứng minh rằng giao điểm các đường phân giác của tam giác ABC là giao điểm các đường trung trực của tam giác ADE.(Dựa vào tính chất ba đường trung trực của tam giác