Cho hàm số y = f ( x ) có đạo hàm là f ' x = 1 2 x - 1 và f ( 1 ) = 1 . G i á t r ị f ( 5 )
A. 1 + ln3
B. ln2
C. 1 + ln2
D. ln3
Cho hàm số y=f(x) có đạo hàm là f ' ( x ) = x ( x + 1 ) 2 ( x - 1 ) . Hàm số y=f(x) có bao nhiêu điểm cực trị?
Cho hàm số y=f(x) có đạo hàm là f′(x)=(x−1)(x−2)2(x−3). Số điểm cực trị của hàm số là
A. 3
B. 1
C. 2
D. 0
Cho hàm số y= f(x) có đạo hàm là f'(x)=(x-1) ( x - 2 ) 2 (x-3). Số điểm cực trị của hàm số là
A. 0
B. 2
C. 1
D. 3
Bài 1: Xét tính đơn điệu của hàm số \(y=f(x)\) khi biết đạo hàm của hàm số là:
a) \(f'(x)=(x+1)(1-x^2)(2x-1)^3\)
b) \(f'(x)=(x+2)(x-3)^2(x-4)^3\)
Bài 2: Cho hàm số \(y=f(x)\) có đạo hàm \(f'(x)=x(x+1)(x-2)\). Xét tính biến thiên của hàm số:
a) \(y=f(2-3x)\)
b) \(y=f(x^2+1)\)
c) \(y=f(3x+1)\)
Cho hàm số y=f(x) có đạo hàm là f ' ( x ) = ( x - 1 ) 2 ( x + 2 ) ( 3 - x ) . Khi đó số điểm cực trị hàm số là
A. 0
B. 1
C. 2
D. 3
Cho hàm số f(x) có đạo hàm f ' ( x ) = x ( x + 1 ) ( x + 2 ) 3 , ∀ x ∈ R . Số điểm cực trị của hàm số y = f ( x 2 - 2 x ) là
A. 3.
B. 2.
C. 5.
D. 4.
Cho y = f ( x ) có đạo hàm f ' ( x ) = ( x - 2 ) ( x - 3 ) 2 . Khi đó số cực trị của hàm số y = f ( 2 x + 1 ) là
A. 0
B. 2
C. 1
D. 3
Cho hàm số liên tục trên khoảng (a;b) và x 0 ∈ ( a ; b ) . Có bao nhiêu mệnh đề đúng trong các mệnh đề sau?
(1) Hàm số đạt cực trị tại điểm x 0 khi và chỉ khi f ' ( x 0 ) = 0 .
(2) Nếu hàm số y = f ( x ) có đạo hàm và có đạo hàm cấp hai tại điểm x 0 thỏa mãn điều kiện f ' ( x 0 ) = f ' ' ( x 0 ) = 0 thì điểm x 0 không phải là điểm cực trị của hàm số y = f ( x ) .
(3) Nếu f'(x) đổi dấu khi x qua điểm x 0 thì điểm x 0 là điểm cực tiểu của hàm số y = f ( x ) .
(4) Nếu hàm số y = f ( x ) có đạo hàm và có đạo hàm cấp hai tại điểm x 0 thỏa mãn điều kiện f ' ( x 0 ) = 0 , f ' ' ( x 0 ) > 0 thì điểm x 0 là điểm cực tiểu của hàm số y = f ( x ) .
A. 1
B. 2
C. 0
D. 3
Đáp án A
Phương pháp:
Dựa vào khái niệm cực trị và các kiến thức liên quan.
Cách giải:
(1) chỉ là điều kiện cần mà không là điều kiện đủ.
VD hàm số y = x3 có y' = 3x2 = 0 ⇔ x = 0. Tuy nhiên x = 0 không là điểm cực trị của hàm số.
(2) sai, khi f''(x0) = 0, ta không có kết luận về điểm x0 có là cực trị của hàm số hay không.
(3) hiển nhiên sai.
Vậy (1), (2), (3): sai; (4): đúng
Cho hàm số y=f(x) có đạo hàm f ' ( x ) = x 2 ( x 2 - 1 ) . Điểm cực tiểu của hàm số y=f(x) là:
A. x = 0.
B. x = -1.
C. y = 0.
D. x = 1
Cho hàm số y=f(x) có đạo hàm là
f ' ( x ) = ( x − 1 ) 2 ( x + 2 ) 3 ( 3 − x ) . Khi đó số điểm cực trị của hàm số là
A. 0
B. 1
C. 2
D. 3
Đáp án C
Do y ' chỉ đổi dấu tại x = -2, x = 3. Nên hàm số đã cho có 2 điểm cực trị