Chứng minh rằng D = 1 2 2 + 1 3 2 + 1 4 2 + . . . + 1 10 2 < 1
A=1/2^2+1/100^2 Chứng minh rằng A<1
B=1/1^2+1/1^2+1/3^2+...+1/100^2 Chứng minh rằng B<1 3/4 (hỗn số nhé)
C=1/1^2+1/4^2+1/6^2+...+1/100^2 Chứng minh rằng C<1/2
D=1/4^2+1/5^2+1/6^2+...+1/99^2+1/100^2 Chứng minh rằng 1/5<D<1/3
Giup mình nha mình đang cần gấp
a>
\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000
ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )
1/100^2<1/2
=>A<1
Cho C = 1/11 + 1/12 = 1/13 +...+ 1/19
Chứng minh rằng C ko phải là số nguyên
b) Cho D = 2( 1/3 + 1/15 + 1/35 +...+1/n(n+2)) với n thuộc N*
Chứng minh rằng D ko phải lf số nguyên
c) Cho E = 1/3 + 1/4 + 1/5 + 2/7 + 2/9 + 2/11
Chứng minh rằng E ko phải là số nguyên
Bài khó quá, giúp mình nha!
j vậy bẹn, đây là sinh lớp 7 mak :v ?
chứng minh rằng
d, D= 1/2^3 + 1/3^3 + 1/4^3 +...+ 1/n^3<1/4
Cho 4 số a,b,c,d bất kỳ chứng minh rằng : \(\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}=< \sqrt{a^2+b^2}+\sqrt{c^2+d^2}\)
bài 2
Chứng minh rằng: \(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+....+\dfrac{1}{\sqrt{n}}>2\left(\sqrt{n+1}-1\right)\) Với n là số nguyên
1. Câu hỏi của Trần Huỳnh Thanh Long - Toán lớp 9 - Học toán với OnlineMath
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2 =0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| < |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)
2 = 0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2
Câu 1 : Chứng minh rằng : 3 - 4sin2x = 4cos2x - 1Câu 2 : Chứng minh rằng : cos4x - sin4x = 2cos2x - 1 = 1 - 2sin2xCâu 3 : Chứng minh rằng : sin4x + cos4x = 1 - 2sin2xCos2x
1/ \(3-4\sin^2=4\cos^2x-1\Leftrightarrow4\left(\sin^2x+\cos^2x\right)-4=0\Leftrightarrow4.1-4=0\left(ld\right)\Rightarrow dpcm\)
2/ \(\cos^4x-\sin^4x=\left(\cos^2x+\sin^2x\right)\left(\cos^2x-\sin^2x\right)=\cos^2x-\left(1-\cos^2x\right)=2\cos^2x-1=\left(1-\sin^2x\right)-\sin^2x=1-2\sin^2x\)
3/ \(\sin^4x+\cos^4x=\left(\sin^2x+\cos^2x\right)^2-2\sin^2x.\cos^2x=1-2\sin^2x.\cos^2x\)
1.Chứng minh rằng :
\(4\sqrt[4]{\left(a+1\right)\left(b+4\right)\left(c-2\right)\left(d-3\right)}\le a+b+c+d\)với \(a\ge-1;b\ge-4;c\ge2;d>3\)
2. Chứng minh rằng :
\(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\ge\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)với \(a,b,c,d>0\)
Câu 1:
\(4\sqrt[4]{\left(a+1\right)\left(b+4\right)\left(c-2\right)\left(d-3\right)}\le a+1+b+4+c-2+d-3=a+b+c+d\)
Dấu = xảy ra khi a = -1; b = -4; c = 2; d= 3
\(\frac{a^2}{b^5}+\frac{1}{a^2b}\ge\frac{2}{b^3}\)\(\Leftrightarrow\)\(\frac{a^2}{b^5}\ge\frac{2}{b^3}-\frac{1}{a^2b}\)
\(\frac{2}{a^3}+\frac{1}{b^3}\ge\frac{3}{a^2b}\)\(\Leftrightarrow\)\(\frac{1}{a^2b}\le\frac{2}{3a^3}+\frac{1}{3b^3}\)
\(\Rightarrow\)\(\Sigma\frac{a^2}{b^5}\ge\Sigma\left(\frac{5}{3b^3}-\frac{2}{3a^3}\right)=\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)
ta sẽ giết ngươi kí tên dép đờ kiu lờ
Cho tam giác ABC có góc A=90 độ ; góc B=60 độ , đường cao AH . Trên HC lấy điểm D sao cho DH=BH
1 . Chứng minh tam giác ABD đều
2 . Vẽ CF vuông góc với AD (F thuộc AD)
Chứng minh rằng : AH=FC
3.Chứng minh rằng : 1/AB^2+1/AC^2=1/AH^2