Giá tri y thoả mãn x/4=y/3 và y - 2x=15. Giup mik vs!!
Giá trị x và y thoả mãn x^2 -2x+y^2 +4y+5=0 là (x;y)
|------------| Tuổi em trước đây
|------------|------------| Tuổi anh trước đây
|------------|------------| Tuổi em hiện nay
|------------|------------|------------| Tuổi anh hiện nay
Coi tuổi em trước đây là 1 phần thì tuổi anh trước đây hay tuổi em hiện nay là 2 phần như thế. Hiện nay tuổi em gấp đôi tuổi em trước đây tức là tuổi em tăng thêm 1 phần thì tuổi anh cũng tăng thêm 1 phần như thê
=> Tuổi em hiện nay là 2 phần thì tuổi anh là 3 phần
Tổng số phần bằng nhau là
2+3=5 phần
Giá trị 1 phần là
60:5=12 tuổi
Tuổi em hiện nay là
2x12=24 tuổi
Tuổi anh là
60-24=36 tuổi
\(x^2-2x+y^2+4y+5=0\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)
Mà \(\left(x-1\right)^2\ge0\forall x\)
\(\left(y+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x;y\)
Dầu "=" xảy ra<=> \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)
Bài 1: cho x,y thoả mãn 0<x<2 và 4<y<5 và x+y=6
Tìm Min của P= \(\frac{1}{x}+\frac{1}{y}\)
cac ban oi giup minh di minh chuan bi di hoc roi. giup minh nhe.
Nhận xét : số chính phương chia 3 dư 0 hoặc 1
+, Nếu x và y đều ko chia hết cho 3 => x^2 và y^2 đều chia 3 dư 1
=> x^2+y^2 chia 3 dư 2 ( ko t/m )
+, Nếu trong 2 số có 1 số chia hết cho 3 , 1 số ko chia hết cho 3
=> x^2+y^2 chia 3 dư 1 ( ko t/m )
Vậy để x^2+y^2 chia hết cho 3 thì x và y đều chia hết cho 3
Tk mk nha
Cho các số dương x, y thoả mãn \(x\sqrt{x}+y\sqrt{y}=x^2+y^2=x^2\sqrt{x}+y^2\sqrt{y}.\)Tính giá trị của x + y .
Lời giải:
Điều kiện đề bài:
\(\Rightarrow \left\{\begin{matrix} x^2+y^2-x\sqrt{x}-y\sqrt{y}=0\\ x^2\sqrt{x}+y^2\sqrt{y}-x^2-y^2=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\sqrt{x}(\sqrt{x}-1)+y\sqrt{y}(\sqrt{y}-1)=0\\ x^2(\sqrt{x}-1)+y^2(\sqrt{y}-1)=0\end{matrix}\right.\)
\(\Rightarrow (x^2-x\sqrt{x})(\sqrt{x}-1)+(y^2-y\sqrt{y})(\sqrt{y}-1)=0\) (lấy vế 2 trừ vế 1)
\(\Leftrightarrow x\sqrt{x}(\sqrt{x}-1)^2+y\sqrt{y}(\sqrt{y}-1)^2=0\)
Vì mỗi số hạng trên đều không âm với mọi $x,y>0$ nên để tổng của chúng bằng $0$ thì:
\(x\sqrt{x}(\sqrt{x}-1)^2=y\sqrt{y}(\sqrt{y}-1)^2=0\)
\(\Rightarrow x=y=1\Rightarrow x+y=2\)
cho hai số duong x , y thỏa mãn x>y và (x-2y)^2 /xy = 8/3 . tinh x/y
GIUP MIK CAC BAN OI
(x-2y)^2/xy=8/3
=>3(x-2y)^2=8xy
=>3(x^2-4xy+4y^2)=8xy
=>3x^2-12xy+12y^2-8xy=0
=>3x^2-20xy+12y^2=0
=>3x^2-18xy-2xy+12y^2=0
=>3x(x-6y)-2y(x-6y)=0
=>(x-6y)(3x-2y)=0
=>x=6y hoặc 3x=2y
=>x/y=6/1 hoặc x/y=2/3
cho x,y >0 thoả mãn hệ thức: \(\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)=3\sqrt{y}\left(\sqrt{x}+5\sqrt{y}\right)\).
hãy tính giá trị của biểu thức: \(E=\frac{2x+\sqrt{xy}+3y}{x+\sqrt{xy}-y}\)
\(x+\sqrt{xy}=3\sqrt{xy}+15y\Leftrightarrow x-2\sqrt{xy}+y=16y\Leftrightarrow\sqrt{x}=\sqrt{y}+4\sqrt{y}=5\sqrt{y}\Leftrightarrow x=25y\)
\(E=\frac{50y+5y+3y}{25y+5y-y}=\frac{58}{29}=2\)
Giả sử: x,y,z là các số thực dương thoả mãn \(x+z\le2y\) và \(x^2+y^2+z^2=1\)
Tìm giá trị lớn nhất của biểu thức \(P=\frac{xy}{1+z^2}+\frac{yz}{1+x^2}-y^3\left(\frac{1}{x^3}+\frac{1}{z^3}\right)\)
Tìm cặp số thực(x;y) sao cho x;y thoả mãn
x=\(^{x^2+y^2}\)và y=2xy
bài 1: cho x,y thuộc R thoả mãn x^3+y^3+3.(x^2+y^2)+4.(x+y)+4=0 với xy>0
Tìm Max M = \(\frac{1}{x}+\frac{1}{y}\)
cac ban oi giup minh. minh dang can gap.