Với a ≥ 0 , b ≥ 0 , 2 a ≠ 3 b rút gọn biểu thức 2 a + 3 b 2 a + 3 b + 8 a 3 − 27 b 3 3 b − 2 a ta được?
A. - 6 ab 2 a + 3 b
B. 6 ab 2 a + 3 b
C. - 6 ab 2 a - 3 b
D. 6 ab 2 a - 3 b
Bài 1: Cho biểu thức P = √x √x x-4 √x−2+√x+2) 2√x (với x > 0 và x ≠ 4) a) Rút gọn biểu thức P b) Tìm x để P = 3 Cho biểu thức P = √x √x x-25 + √x-5 √x+5) 2√x (với x > 0 và x ≠ 25) a) Rút gọn biểu thức P b) Tìm x để P = 2
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề và hỗ trợ bạn tốt hơn nhé.
Rút gọn biểu thức E = a - b 2 a ab ( a - b ) 2 với 0 < a < b, ta được:
A. b 2
B. a b 2
C. − b 2
D. b 2 a
Cho biểu thức V = 1 x + 2 + 1 x − 2 x + 2 x với x > 0 , x ≠ 0 .
a) Rút gọn biểu thức V.
b) Tìm giá trị của x để V= 1/3.
a, V = 1 x + 2 + 1 x − 2 x + 2 x = x − 2 + x + 2 x + 2 x − 2 x + 2 x = 2 x − 2
b, V = 1 3 ⇔ 2 x − 2 = 1 3 ⇔ x − 2 = 6 ⇔ x = 64 ( t / m )
rút gọn biểu thức \(B=\dfrac{\sqrt{a}}{\sqrt{a}-3}-\dfrac{3}{\sqrt{a}+3}+\dfrac{a-2}{9-a}\)với a ≥ 0, a ≠ 9
\(B=\dfrac{a+3\sqrt{a}-3\sqrt{a}+9-a+2}{a-9}=\dfrac{11}{a-9}\)
Rút gọn biểu thức: D = 2 ( a + b ) b b a 2 + 2 ab + b 2 với a, b > 0, ta được:
A. 29
B. 2
C. 10
D. 25
Câu 1. Rút gọn các biểu thức sau:
a/\(\sqrt{4a^2}\)(với a<0)
b/\(\sqrt{4x^2-12x+9}\)(với x<3/2)
a) \(\sqrt{4a^2}=2\left|a\right|=-2a\) ( do a<0)
b) \(\sqrt{4x^2-12x+9}=\sqrt{\left(2x-3\right)^2}=\left|2x-3\right|=3-2x\)(do \(x< \dfrac{3}{2}\Leftrightarrow2x-3< 0\))
1 a. Rút gọn biểu thức sau A = \(\left(x^{\text{2}}-2x+4\right):\left(x^3+8\right)-x^2\) rồi tính giá trị của A tại x = -2
b. Rút gọn biểu thức B = (x - 2) : 2x + 5x rồi tính giá trị của biểu thức B tại x = 0
Câu 2 (1,0 điểm). Tìm x biết.
a) b)
Câu 3 (1,0 điểm). Cho biểu thức ; với
a) Rút gọn biểu thức P .
b) Tìm điều kiện của x để P > 0
Câu 2:
\(a,ĐK:x\ge-3\\ PT\Leftrightarrow6\sqrt{x+2}-3\sqrt{x+2}-\sqrt{x+3}=2\\ \Leftrightarrow2\sqrt{x+2}=2\\ \Leftrightarrow\sqrt{x+2}=1\\ \Leftrightarrow x+2=1\\ \Leftrightarrow x=-1\left(tm\right)\\ b,\Leftrightarrow\sqrt{\left(2x-3\right)^2}=2017\Leftrightarrow\left|2x-3\right|=2017\\ \Leftrightarrow\left[{}\begin{matrix}2x-3=2017\\3-2x=2017\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1010\\x=-1007\end{matrix}\right.\)
Câu 3:
\(a,P=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{-3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\\ P=\dfrac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{-3}{\sqrt{x}+3}\\ b,P=\dfrac{-3}{\sqrt{x}+3}< 0,\forall x\left(-3< 0;\sqrt{x}+3>0\right)\\ \Leftrightarrow x\in\varnothing\)
A=(2√x)/(√x+3) và B=(√x+1)/(√x-3)-(7√x+3)/(9-x) (với x≥0;x≠9)
a)Tính giá trị biểu thức A khi x=16
b)Rút gọn biểu thức P=A+B
a: Khi x=16 thì \(A=\dfrac{2\cdot\sqrt{16}}{\sqrt{16}+3}=\dfrac{2\cdot4}{4+3}=\dfrac{8}{7}\)
b: P=A+B
\(=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}-\dfrac{7\sqrt{x}+3}{9-x}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{7\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)+7\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2x-6\sqrt{x}+x+4\sqrt{x}+3+7\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3x+5\sqrt{x}+6}{x-9}\)
Rút gọn biểu thức : a . A = 4 √25x/4 - 8/3 √9x/4 - 4/3x √9x³/64 ( với x ≥ 0 ) b. B = y/2 + 3/4 √1-4y+4y² - 3/2 ( với y ≤ 1/2 )
a: \(A=4\cdot\dfrac{5}{2}\sqrt{x}-\dfrac{8}{3}\cdot\dfrac{3}{2}\sqrt{x}-\dfrac{4}{3x}\cdot\dfrac{3x}{8}\cdot\sqrt{x}\)
\(=10\sqrt{x}-4\sqrt{x}-\dfrac{1}{2}\sqrt{x}\)
\(=\dfrac{11}{2}\sqrt{x}\)
b: \(B=\dfrac{y}{2}+\dfrac{3}{4}\cdot\left|2y-1\right|-\dfrac{3}{2}\)
\(=\dfrac{y}{2}+\dfrac{3}{4}\left(1-2y\right)-\dfrac{3}{2}\)
=1/2y+3/4-3/2y-3/2
=-y-3/4