Cho f(x) có tính chất
\(\left(x-1\right)f\left(x\right)+3f\left(-x\right)=5-x\)
Tính f(-2)
Cho \(f\left(x\right)\) có tính chất \(\left(x-1\right)f\left(x\right)+3f\left(-x\right)=5-x\)
Tính \(f\left(-2\right)\)
Cho \(\lim\limits_{x\rightarrow5}\dfrac{f\left(x\right)-2}{x-5}=5\). Tính \(\lim\limits_{x\rightarrow5}\dfrac{\sqrt{3f\left(x\right)+10}+\sqrt{f^3\left(x\right)+1}-7}{x^2-25}\)
Chọn F(x)=5x-23
\(\lim\limits_{x\rightarrow5}\dfrac{f\left(x\right)-2}{x-5}=\lim\limits_{x\rightarrow5}\dfrac{5x-23-2}{x-5}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{5x-25}{x-5}=\lim\limits_{x\rightarrow5}\dfrac{5\left(x-5\right)}{x-5}=5\)
=>f(x)=5x-23 thỏa mãn yêu cầu đề bài
\(\lim\limits_{x\rightarrow5}\dfrac{\sqrt{3\cdot f\left(x\right)+10}+\sqrt{f^3\left(x\right)+1}-7}{x^2-25}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{\sqrt{3\left(5x-23\right)+10}+\sqrt{\left(5x-23\right)^3+1}-7}{\left(x-5\right)\left(x+5\right)}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{\sqrt{15x-59}+\sqrt{\left(5x-23\right)^3+1}-7}{\left(x-5\right)\left(x+5\right)}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{\sqrt{15x-59}-4+\sqrt{\left(5x-23\right)^3+1}-3}{\left(x-5\right)\left(x+5\right)}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{\dfrac{15x-59-16}{\sqrt{15x-59}+4}+\dfrac{\left(5x-23\right)^3+1-9}{\sqrt{\left(5x-23\right)^3+1}+3}}{\left(x-5\right)\left(x+5\right)}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{\dfrac{15\left(x-5\right)}{\sqrt{15x-59}+4}+\dfrac{\left(5x-23\right)^3-8}{\sqrt{\left(5x-23\right)^3+1}+3}}{\left(x-5\right)\left(x+5\right)}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{\dfrac{15\left(x-5\right)}{\sqrt{15x-59}+4}+\dfrac{\left(5x-23-2\right)\left[\left(5x-23\right)^2+2\left(5x-23\right)+4\right]}{\sqrt{\left(5x-23\right)^3+1}+3}}{\left(x-5\right)\left(x+5\right)}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{\dfrac{15}{\sqrt{15x-59}+4}+\dfrac{5\cdot\left(25x^2-230x+529+10x-46+4\right)}{\sqrt{\left(5x-23\right)^3+1}+3}}{x+5}\)
\(=\dfrac{\dfrac{15}{\sqrt{15\cdot5-59}+4}+\dfrac{5\left(25\cdot5^2-220\cdot5+487\right)}{\sqrt{\left(5\cdot5-23\right)^3+1}+3}}{5+5}\)
\(=\dfrac{\dfrac{15}{8}+\dfrac{5\cdot12}{6}}{10}=\dfrac{19}{16}\)
Do \(\lim\limits_{x\rightarrow5}\dfrac{f\left(x\right)-2}{x-5}\) hữu hạn nên \(f\left(x\right)-2=0\) có nghiệm \(x=5\)
\(\Rightarrow f\left(5\right)=2\)
\(\lim\limits_{x\rightarrow5}\dfrac{\sqrt{3f\left(x\right)+10}-4+\sqrt{f^3\left(x\right)+1}-3}{\left(x-5\right)\left(x+5\right)}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{\dfrac{3\left[f\left(x\right)-2\right]}{\sqrt{3f\left(x\right)+10}+4}+\dfrac{\left[f\left(x\right)-2\right]\left[f^2\left(x\right)+2f\left(x\right)+4\right]}{\sqrt{f^3\left(x\right)+1}+3}}{\left(x-5\right)\left(x+5\right)}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{\dfrac{f\left(x\right)-2}{x-5}.\dfrac{3}{\sqrt{3f\left(x\right)+10}+4}+\dfrac{f\left(x\right)-2}{x-5}.\dfrac{f^2\left(x\right)+2f\left(x\right)+4}{\sqrt{f^3\left(x\right)+1}+3}}{x+5}\)
\(=\dfrac{5.\dfrac{3}{\sqrt{3.2+10}+4}+5.\dfrac{2^2+2.2+4}{\sqrt{2^3+1}+3}}{5+5}=\)
Cho f(x+y)=f(x)+f(y)
Tìm tất cả các hàm số f: R --> R thoả mãn : (Với mọi x,y thuộc R)
\(f\left(x^3-y^3\right)=xf\left(x^2\right)-yf\left(y^2\right)\)
\(f\left(x^5+y^5+y\right)=x^3f\left(x^2\right)+y^3f\left(y^2\right)+f\left(y\right)\)
@Akai Haruma @Nguyễn Việt Lâm
Giúp em với ạ, em cảm ơn
Bài 1:
Cho $y=0$ thì: $f(x^3)=xf(x^2)$
Tương tự khi cho $x=0$
$\Rightarrow f(x^3-y^3)=xf(x^2)-yf(y^2)=f(x^3)-f(y^3)$
$\Rightarrow f(x-y)=f(x)-f(y)$ với mọi $x,y\in\mathbb{R}$
Cho $x=0$ thì $f(-y)=0-f(y)=-f(y)$
Cho $y\to -y$ thì: $f(x+y)=f(x)-f(-y)=f(x)--f(y)=f(x)+f(y)$ với mọi $x,y\in\mathbb{R}$
Đến đây ta có:
$f[(x+1)^3+(x-1)^3]=f(2x^3+6x)=f(2x^3)+f(6x)$
$=2f(x^3)+6f(x)=2xf(x^2)+6f(x)$
$f[(x+1)^3+(x-1)^3]=f[(x+1)^3-(1-x)^3]$
$=(x+1)f((x+1)^2)-(1-x)f((1-x)^2)$
$=(x+1)f(x^2+2x+1)+(x-1)f(x^2-2x+1)$
$=(x+1)[f(x^2)+2f(x)+f(1)]+(x-1)[f(x^2)-2f(x)+f(1)]$
$=2xf(x^2)+4f(x)+2xf(1)$
Do đó:
$2xf(x^2)+6f(x)=2xf(x^2)+4f(x)+2xf(1)$
$2f(x)=2xf(1)$
$f(x)=xf(1)=ax$ với $a=f(1)$
Cho f(x+y)=f(x)+f(y)
Tìm tất cả các hàm số f: R --> R thoả mãn : (Với mọi x,y thuộc R)
\(f\left(x^3-y^3\right)=xf\left(x^2\right)-yf\left(y^2\right)\)
\(f\left(x^5-y^5+xy\right)=x^3f\left(x^2\right)-y^3f\left(y\right)+f\left(xy\right)\)
Em cảm ơn ạ !!!
\(f\left(x^5+y^5+y\right)=x^3f\left(x^2\right)+y^3f\left(y^2\right)+f\left(y\right)\)
Sửa lại đề câu 2 !!
Cho h/s f(x) liên tục và x/đ trên [-1 ; \(+\infty\)] và t/m : \(f\left(x+1\right)+3f\left(3x+2\right)-4f\left(4x+1\right)-f\left(2^x\right)=\dfrac{3}{\sqrt{x+1}+\sqrt{x+2}}\forall x\in\left[-1;+\infty\right]\)
Tính \(\int\limits^2_1\dfrac{f\left(x\right)}{x}dx\) = ?
Từ GT ta lấy tích phân 2 vế cận từ 0 đến 1 ; sẽ được :
\(\int\limits^1_0f\left(x+1\right)dx+\int\limits^1_03f\left(3x+2\right)dx-\int\limits^1_04f\left(4x+1\right)dx-\int\limits^1_0f\left(2^x\right)dx=\int\limits^1_0\dfrac{3dx}{\sqrt{x+1}+\sqrt{x+2}}\left(1\right)\)
\(\int\limits^1_0\dfrac{3dx}{\sqrt{x+1}+\sqrt{x+2}}=\int\limits^1_03\left(\sqrt{x+2}-\sqrt{x+1}\right)dx\) =
\(2\left[\left(x+2\right)\sqrt{x+2}-\left(x+1\right)\sqrt{x+1}\right]\dfrac{1}{0}\) = \(2+6\sqrt{3}-8\sqrt{2}\left(2\right)\)
Dễ thấy : \(\int\limits^1_0f\left(x+1\right)dx=\int\limits^2_1f\left(t\right)dt=\int\limits^2_1f\left(x\right)dx\)
\(\int\limits^1_03f\left(3x+2\right)dx=\int\limits^5_2f\left(t\right)dt=\int\limits^5_2f\left(x\right)dx\) (3)
\(\int\limits^1_04f\left(4x+1\right)=\int\limits^5_1f\left(t\right)dt=\int\limits^5_1f\left(x\right)dx\left(4\right)\)
\(\int\limits^1_0f\left(2^x\right)dx=\int\limits^2_1\dfrac{f\left(t\right)dt}{tln2}=\dfrac{1}{ln2}.\int\limits^2_1\dfrac{f\left(t\right)dt}{t}=\dfrac{1}{ln2}.\int\limits^2_1\dfrac{f\left(x\right)dx}{x}\) (5)
Thay (2) ; (3) ; (4) ; (5) vào (1) ta được :
\(\int\limits^2_1f\left(x\right)dx+\int\limits^5_2f\left(x\right)dx-\int\limits^5_1f\left(x\right)dx-\dfrac{1}{ln2}.\int\limits^2_1\dfrac{f\left(x\right)dx}{x}=2+6\sqrt{3}-8\sqrt{2}\)
\(\Leftrightarrow\int\limits^2_1\dfrac{f\left(x\right)dx}{x}=\left(2+6\sqrt{3}-8\sqrt{2}\right)ln2\)
Cho \(\lim\limits_{x\rightarrow2}\dfrac{f\left(x\right)-32}{x-2}=3\). Tính \(\lim\limits_{x\rightarrow2}\dfrac{\sqrt{3f\left(x\right)+10}+\sqrt[3]{f\left(x\right)-5}-2x-3}{x^2+x-6}\)
Em kiểm tra lại đề, chỗ \(f\left(x\right)-32\) kia có vẻ sai, vì như thế thì biểu thức đã cho ko phải dạng vô định
Cho hai hàm số \(f\left(x\right),g\left(x\right)\) đều có đạo hàm trên R và thỏa mãn: \(f^3\left(2-x\right)-2f^2\left(2+3x\right)+x^2.g\left(x\right)+36x=0\forall x\in R\). Tính \(A=3f\left(2\right)+4f'\left(2\right)\)
A. A = -10
B. A = 10
C. A = 1
D. A = 9
\(f^3\left(2-x\right)-2f^2\left(2+3x\right)+x^2g\left(x\right)+36x=0\) (1)
Thay \(x=0\Rightarrow f^3\left(2\right)-2f^2\left(2\right)=0\Rightarrow\left[{}\begin{matrix}f\left(2\right)=0\\f\left(2\right)=2\end{matrix}\right.\)
Đạo hàm 2 vế của (1):
\(\Rightarrow-3f^2\left(2-x\right).f'\left(2-x\right)-12f\left(2+3x\right).f'\left(2+3x\right)+2x.g\left(x\right)+x^2.g'\left(x\right)+36=0\)
Thay \(x=0\)
\(\Rightarrow-3f^2\left(2\right).f'\left(2\right)-12f\left(2\right).f'\left(2\right)+36=0\)
TH1: \(f\left(2\right)=0\Rightarrow36=0\) (ktm)
TH2: \(f\left(2\right)=2\)
\(\Rightarrow-3.2^2.f'\left(2\right)-12.2.f'\left(2\right)+36=0\Rightarrow f'\left(2\right)=1\)
\(\Rightarrow A=3.2+4.1=10\)
Cho biết \(f\left(x\right)+3f\left(\frac{1}{x}\right)=x^2\)
Tính \(f\left(2\right)\)
Thế x = 2 và x = \(\frac{1}{2}\)và phương trình đầu ta được
\(\hept{\begin{cases}f\left(2\right)+3f\left(\frac{1}{2}\right)=4\\f\left(\frac{1}{2}\right)+3f\left(2\right)=\frac{1}{4}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}f\left(\frac{1}{2}\right)=\frac{1}{4}-3f\left(2\right)\left(1\right)\\f\left(2\right)+3.\left(\frac{1}{4}-3f\left(2\right)\right)=4\left(2\right)\end{cases}}\)
Ta có: (2) <=> 32f(2) + 13 = 0
\(\Leftrightarrow f\left(2\right)=\frac{-13}{32}\)
Tham gia cho nó đông vui.vắng vẻ quá
\(\hept{\begin{cases}f\left(2\right)+3f\left(\frac{1}{2}\right)=4\\f\left(\frac{1}{2}\right)+3f\left(2\right)=\frac{1}{4}\end{cases}}\Leftrightarrow\hept{\begin{cases}f\left(2\right)+3f\left(\frac{1}{2}\right)=4\\3f\left(\frac{1}{2}\right)+9f\left(2\right)=\frac{3}{4}\end{cases}}\)
Trừ cho nhau
\(8f\left(2\right)=\left(\frac{3}{4}-4\right)=-\frac{13}{4}\Rightarrow f\left(2\right)-\frac{13}{32}\)
P/s: Với giá trị nào của x thì f(x) nhận giá trị không âm
Anh thử "làm màu" xem nào.
Thế \(x\) bởi \(\frac{1}{x}\) trong pt đầu được: \(3f\left(x\right)+f\left(\frac{1}{x}\right)=\frac{1}{x^2}\)
Kết hợp pt đầu được 1 hệ, giải hệ này được \(f\left(x\right)=\frac{\frac{3}{x^2}-x^2}{8}\).
Tới đây tính được \(f\left(2\right)=-\frac{13}{32}\)
(Dạng toán này gọi là phương trình hàm, nghĩa là tìm các hàm số thoả một phương trình nào đó. Tuy nhiên, việc che dạng toán phương trình hàm bằng câu kiểu "tính \(f\left(2\right)\)" là không hay, vì người ra đề có quyền "lấy cớ" để phủ nhận đây là phương trình hàm, một dạng toán chỉ có ở chuyên toán THPT.)
cho hàm số y=f(x) thỏa mãn: \(f\left(x\right)+3f\left(\frac{1}{x}\right)=x^2\) với mọi x khác 0. Tính f(2)
thay x=2 và x=1/2 ta có
\(\hept{\begin{cases}f\left(2\right)+3f\left(\frac{1}{2}\right)=4\\f\left(\frac{1}{2}\right)+3f\left(2\right)=\frac{1}{4}\end{cases}\Rightarrow f\left(2\right)=-\frac{13}{32}}\)