Chứng minh các đẳng thức sau:
a ) 3 2 6 + 2 2 3 − 4 3 2 = 6 6 b ) ( x 6 x + 2 x 3 + 6 x ) : 6 x = 2 1 3 v ó i x > 0
Chứng minh các đẳng thức sau:
\(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}=\frac{\sqrt{6}}{6}\)
Chứng minh các đẳng thức: 2 + 3 + 2 - 3 = 6
Chứng minh các đẳng thức sau:
e) \(\left(\dfrac{3}{2}.\sqrt{6}+2.\sqrt{\dfrac{2}{3}}-4.\sqrt{\dfrac{3}{2}}\right).\left(\dfrac{3}{2}.\sqrt{6}+2.\sqrt{\dfrac{2}{3}}+4.\sqrt{\dfrac{3}{2}}\right)=-\sqrt{2}\)
`e)(3/2sqrt6+2sqrt{2/3}-4sqrt{3/2})(3/2sqrt6+2sqrt{2/3}+4sqrt{3/2})`
`=(3/2sqrt6+2sqrt{2/3})^2-(4\sqrt{3/2})^2`
`=((3sqrt6)/2+(2sqrt2)/3)^2-16*3/2`
`=((9sqrt6)/6+(4sqrt6)/6)^2-24`
`=((13sqrt6)/6)^2-24`
`=13^2/6-24`
`=25/6`
Chứng minh các đẳng thức sau
a) \(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}=\frac{\sqrt{6}}{6}\)
b)\(\left(x\sqrt{\frac{6}{x}}+\sqrt{\frac{2x}{3}}+\sqrt{6x}\right):\sqrt{6x}=2\frac{1}{3}\)
các bạn giúp mình với
a) Biến đổi vế trái ta có:
\(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}\)
\(=\frac{3\sqrt{6}}{2}+\frac{2\sqrt{6}}{3}-\frac{4\sqrt{6}}{2}=\frac{9\sqrt{6}+4\sqrt{6}-12\sqrt{6}}{6}=\frac{\sqrt{6}}{6}=VP\)
Vậy đẳng thức trên đc chứng minh
b) Biến đổi vế trái ta có:
\(\left(x\sqrt{\frac{6}{x}}+\sqrt{\frac{2x}{3}}+\sqrt{6x}\right):\sqrt{6x}\)
\(=\left(x\sqrt{\frac{6}{x}}+\sqrt{\frac{2x}{3}}+\sqrt{6x}\right)\cdot\frac{1}{\sqrt{6x}}\)
\(=x\sqrt{\frac{6}{x}\cdot\frac{1}{6x}}+\sqrt{\frac{2x}{3}\cdot\frac{1}{6x}}+\sqrt{6x}\cdot\frac{1}{\sqrt{6x}}\)
\(=x\sqrt{\frac{1}{x^2}}+\sqrt{\frac{1}{9}}+1=1+\frac{1}{3}+1=2\frac{1}{3}=VP\)
Vậy đẳng thức trên đc chứng minh
Chứng minh các đẳng thức sau:
a) 3 a 2 − 10 a + 3 2 ( a − 3 ) = 3 2 a − 1 2 với a ≠ 3;
b) b 2 + 3 b + 9 b 3 − 27 = b − 2 b 2 − 5 b + 6 với b ≠ 2 và b ≠ 3.
Chứng minh đẳng thức sau:
3/2 ^6 + 2 ^2/3 4 ^3/2 = ^6 trên 6
Giúp tui nka m.n. Mai kiểm tra 1 tiết òi
chứng minh các hằng đẳng thức sau:(a-b)^3=-(b-a)^3
(-a-b)^2=(a+b)^2
Chứng minh các đẳng thức sau:
a) \(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}=\frac{\sqrt{6}}{6}\)
b) \(\left(x\sqrt{\frac{6}{x}}+\sqrt{\frac{2X}{3}}+\sqrt{6X}\right):\sqrt{6X}=2\frac{1}{3}\)với x > 0
\(a)\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}=\frac{\sqrt{6}}{6}\)
Biến đổi vế trái , ta có :
\(VT=\frac{3}{2}\sqrt{6}+\frac{2}{3}\sqrt{3^2.\frac{2}{3}}-2\sqrt{2^2.\frac{3}{2}}\)
\(=\frac{3}{2}\sqrt{6}+\frac{2}{3}\sqrt{6}-2\sqrt{6}\)
\(=\left(\frac{3}{2}+\frac{2}{3}-2\right)\sqrt{6}\)
\(=\frac{1}{6}\sqrt{6}=\frac{\sqrt{6}}{6}=VP\left(đpcm\right)\)
\(b)\left(x\sqrt{\frac{6}{x}}+\sqrt{\frac{2x}{3}}+\sqrt{6x}\right):\sqrt{6x}=2\frac{1}{3}\)
Biến đổi vế trái , ta có :
\(VT=\left(\sqrt{x^2.\frac{6}{x}}+\sqrt{\frac{6x}{3^2}}+\sqrt{6x}\right):\sqrt{6x}\)
\(=\left(\sqrt{6x}+\frac{1}{3}\sqrt{6x}+\sqrt{6x}\right):\sqrt{6x}\)
\(=\frac{7}{3}\sqrt{6x}:\sqrt{6x}\)
\(=\frac{7}{3}=2\frac{1}{3}=VP\)với x > 0 ( đpcm )
Bài 1: Tìm điều kiện để các phân thức sau có ý nghĩa
a)5x-3/2x^2-x b)x^2-5x+6/x^2-1
c)2/(x+1)(x-3) d)2x+1/x^2-5x+6
Bài 2: Dùng định nghĩa hai phân thức bằng nhau chứng minh các đẳng thức sau:
a)x-2/-x=2^3-x^3/x(x^2+2x+4) (với x =/0)
b)3x/x+y=-3x(x+y)/y^2-x^2 (với x=/ +_ y)
c)x+y/3a=3a(x+y^2)/9a^2(x+y) (với a=/ 0,x=/-y)
Bài 1:
c: ĐKXĐ: \(x\notin\left\{-1;3\right\}\)
Bài 61 (trang 33 SGK Toán 9 Tập 1)
Chứng minh các đẳng thức sau:
a) $\dfrac{3}{2} \sqrt{6}+2 \sqrt{\dfrac{2}{3}}-4 \sqrt{\dfrac{3}{2}}=\dfrac{\sqrt{6}}{6}$;
b) $\left(x \sqrt{\dfrac{6}{x}}+\sqrt{\dfrac{2 x}{3}}+\sqrt{6 x}\right): \sqrt{6 x}=2 \dfrac{1}{3} $ với $x>0$.
a) -17√3/3 b) 11√6
c) 21 d) 11
a) và làm tiếp.
và làm tiếp
a) \(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}\)
\(=\frac{3}{2}\sqrt{6}+\frac{2}{3}\sqrt{6}-\frac{4}{2}\sqrt{6}\)
\(=\left(\frac{3}{2}+\frac{2}{3}-\frac{4}{2}\right)\sqrt{6}\)
\(=\frac{1}{6}\cdot\sqrt{6}=\frac{\sqrt{6}}{6}\left(đpcm\right)\)
b) \(\left(x\sqrt{\frac{6}{x}}+\sqrt{\frac{2x}{3}}+\sqrt{6x}\right):\sqrt{6x}\)
\(=\left(\sqrt{6x}+\frac{1}{3}\sqrt{6x}+\sqrt{6x}\right):\sqrt{6x}\)
\(=\left[\left(1+\frac{1}{3}+1\right)\sqrt{6x}\right]:\sqrt{6x}\)
\(=\frac{7}{3}\sqrt{6x}:\sqrt{6x}=\frac{7}{3}=2\frac{1}{3}\left(đpcm\right)\)