Xác định m để phương trình x 2 + 2 x + m = 0 có hai nghiệm x 1 , x 2 thỏa mãn điều kiện 3 x 1 + 2 x 2 = 1 .
A. m = 15
B. m = -15
C. m = 35
D. m = -35
cho phương trình x^2+6x+m=0
a) tìm m để phương trình có 2 nghiệm phân biệt
b) xác định m để phương trình có 2 nghiệm x1:x2 thỏa mãn x1=2x2
a) Ta có: \(\Delta'=(\frac{6}{2})^2-m\)
\(=9-m\)
Để phương trình có 2 nghiệm phân biệt thì:
\(\Delta>0\)
\(\Rightarrow 9-m>0\)
\(\Leftrightarrow m<9\)
Vậy khi m < 9 thì phương trình có 2 nghiệm phân biệt
b)Theo định lí Vi-ét ta có:
\(x_1.x_2=\frac{-m}{1}=-m(1)\)
\(x_1+x_2=\frac{-6}{1}=-6\)
Lại có \(x_1=2x_2\)
\(\Rightarrow3x_2=-6\)
\(\Leftrightarrow x_2=-2\)
\(\Rightarrow x_1=-4\)
Thay x1;x2 vào (1) ta được
\(8=m\)
Vậy m-8 thì x1=2x2
Cho phương trình sau:
x³ +(m² -2)x² - (m-1)x-2=0
a) Xác định m, biết phương trình có một nghiệm x = -1
b) Tìm nghiệm còn lại của phương trỉnh với m vừa xác định
Ai làm được giùm mik thì tl trên diễn đàn rồi gửi tin nhán cho mik 1 bản nhé!
Ai đúng mik tik
CHo phương trình : x2 - ( 2m + 2 )x + m2 + 2m + 0
a) Tìm m để phương trình trên nhận 4 + căn 2019 làm nghiệm
b) Tìm m để phương trình có hai nghiệm x1 x2 thoả mãn x1 -x2 = m2 +2
a, Vì pt trên nhận \(4+\sqrt{2019}\) là nghiệm nên
\(\left(4+\sqrt{2019}\right)^2-\left(2m+2\right)\left(4+\sqrt{2019}\right)+m^2+2m=0\)
\(\Leftrightarrow2035+8\sqrt{2019}-2m\left(4+\sqrt{2019}\right)-8-2\sqrt{2019}+m^2+2m=0\)
\(\Leftrightarrow m^2-2m\left(3+\sqrt{2019}\right)+6\sqrt{2019}+2027=0\)
Có \(\Delta'=\left(3+\sqrt{2019}\right)^2-6\sqrt{2019}-2027=1>0\)
Nên pt có 2 nghiệm \(m=\frac{3+\sqrt{2019}-1}{1}=2+\sqrt{2019}\)
hoặc \(m=\frac{3+\sqrt{2019}+1}{1}=4+\sqrt{2019}\)
b, Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=2m+2\left(1\right)\\x_1x_2=m^2+2m\left(2\right)\end{cases}}\)
Theo đề \(x_1-x_2=m^2+2\left(3\right)\)
Lấy (1) + (3) theo từng vế được
\(2x_1=m^2+2m+5\)
\(\Rightarrow x_1=\frac{m^2+2m+5}{2}\)
\(\Rightarrow x_2=2m+2-x_1=...=-\frac{\left(m-1\right)^2}{2}\)
Thay vào (2) được \(\frac{m^2+2m+5}{2}.\frac{-\left(m-1\right)^2}{2}=m^2+2m\)
\(\Leftrightarrow-\left(m^2+2m+5\right)\left(m-1\right)^2=4m^2+8m\)
hmmm
xác định số hạng tự do m của phương trình
6x2-7x2-16x+m = 0
Nếu phương trình có 1 nghiệm bằng 2 tính các nghiệm còn lại
\(6x^2-7x^2-16x+m=0\)
\(\Leftrightarrow-x^2-16x+m=0\)
Nếu pt có 1 nghiệm bằng 1 thì \(-1-16+m=0\Rightarrow m=17\)
Phương trình trở thành \(-x^2-16x+17=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+17\right)=0\)
Suy ra nghiệm còn lại của pt là -17
cho phương trình x^2 - 2(m+1)x - m^2-4m+3=0
A xác định giá trị m để phương trình có 2 ng trái dấu
B xác định giá trị của m để pt có 2 ng phân biệt đều nhỏ hơn 0
Định m để bất phương trình: (m^2-4m+3).x+m-m^2<0 nghiệm đúng với mọi x
Chúc mn vui vẻ nhé
Ta có:
\(m^2-4m+3=m^2-4m+4-1=\left(m-2\right)^2-1=\left(m-3\right)\left(m-1\right)\)
\(m-m^2=m\left(1-m\right)\)
Bất phương trình <=> \(\left(m-3\right)\left(m-1\right)x+m\left(1-m\right)< 0\)
+) TH1: \(\left(m-3\right)\left(m-1\right)< 0\)
khi đó: \(x>\frac{m}{m-3}\)(loại)
+) TH2: \(\left(m-3\right)\left(m-1\right)>0\)
khi đó: \(x< \frac{m}{m-3}\)(loại)
+) Th3: \(\left(m-3\right)\left(m-1\right)=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=3\end{cases}}\)
Với m=1 ta có: 0x+0<0 vô lí
Với m=3 ta có: \(0x-6< 0\)đúng với mọi x ( thỏa mãn)
Vậy m=3
Tìm m để phương trình \(x^2-x+m^2-6=0\) có hai nghiệm \(x_1,x_2\) thỏa mãn \(2018x_1+2019x_2=2020\) Tích các giá trị của m tìm được là
Cho phương trình ( m^2 - 4)x + 2 =m
a, Tìm m để phương trình trên là phương trình bậc nhất.
b, Với điều kiện nào của m thì phương trình trên có nghiệm duy nhất? Tifm nghiệm duy nhất đó theo m .
c, Tìm m để phương trình có nghiệm x = 1.
Giúp mình với ạ! Cần gấp T^T!
Cho phương trình ( m^2 - 4)x + 2 =m
a, Tìm m để phương trình trên là phương trình bậc nhất.
b, Với điều kiện nào của m thì phương trình trên có nghiệm duy nhất? Tifm nghiệm duy nhất đó theo m .
c, Tìm m để phương trình có nghiệm x = 1.
Giúp mình với ạ! Cần gấp T^T!