Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Diệp Nhi
Xem chi tiết
Thành Danh Đỗ
Xem chi tiết
Nguyen My Van
6 tháng 5 2022 lúc 20:52

\(\cos2A+\cos2B+\cos2C=-1\)

\(\Leftrightarrow\cos2A+\cos2B+\cos2C+1=0\)

\(\Leftrightarrow2\cos\left(A+B\right)\cos\left(A-B\right)+2\cos^2C=0\)

\(\Leftrightarrow2\cos\left(180^0-C\right)\cos\left(A-B\right)+2\cos^2C=0\)

\(\Leftrightarrow-2\cos C\cos\left(A-B\right)+2\cos^2C=0\)

\(\Leftrightarrow-2\cos C(\cos\left(A-B\right)-\cos C)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\cos C=0\\\cos\left(A-B\right)=\cos C\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}C=90^0\\A-B=C\\A-B=-C\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}C=90^0\\A=B+C\\A+C=B\end{matrix}\right.\)

Nếu \(A=B+C\Rightarrow A=B+C=\dfrac{180^o}{2}=90^o\) Tam giác ABC vuông tại A.

Nếu \(B=A+C\Rightarrow B=A+C=\dfrac{180^o}{2}=90^o\) Tam giác ABC vuông tại B.

Vậy, nếu \(\cos2A+\cos2B+\cos2C=-1\) thì tam giác ABC là tam giác vuông.

 
Sách Giáo Khoa
Xem chi tiết
Hương Yangg
7 tháng 4 2017 lúc 19:47

Có: cos 2A + 2√2.cos B + 2√2.cos C = 3
⇔2cos²A - 1 + 2√2.2.cos[(B + C)/2] . cos[(B - C)/2] - 3 = 0
⇔2cos²A + 4√2.sin (A/2) . cos[(B - C)/2] - 4 = 0(1)
Ta thấy: sin(A/2) > 0 ; cos[(B - C)/2] ≤ 1
⇒VT ≤ 2cos²A + 4√2.sin(A/2) - 4
Vì tam giác ABC không tù nên 0 ≤ cos A < 1
⇒cos²A ≤ cos A
⇒VT ≤ 2cos A + 4√2.sin(A/2) - 4
⇒VT ≤ 2.[1 - 2.(sin A/2)²] + 4√2.sin(A/2) - 4
⇒VT ≤ -4.(sin A/2)² + 4√2.sin(A/2) - 2
⇒VT ≤ -2(√2.sin A/2 - 1)² ≤ 0(2)
Kết hợp (1)(2) thì đẳng thức xảy ra khi tất cả các dấu = ở trên xảy ra
⇔cos [(B - C)/2] = 1 và cos²A = cos A và √2.sin A/2 - 1 = 0
⇔góc B = góc C và cos A = 0 và sin A/2 = 1/√2
⇔ góc B = góc C và góc A = 90 độ
Vậy góc A = 90 độ, góc B = góc C = 45 độ

Nguyễn Minh Quân
Xem chi tiết
HaNa
28 tháng 9 2023 lúc 16:22

Theo đl sin có:

\(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}\Rightarrow b=a\dfrac{sinB}{sinA};c=\dfrac{sinC}{sinA}.a\)

Mà `b+c=2a`

\(\Rightarrow a\dfrac{sinB}{sinA}+a\dfrac{sinC}{sinA}=2a\\ \Rightarrow\dfrac{sinB}{sinA}+\dfrac{sinC}{sinA}=2\\ \Leftrightarrow sinB+sinC=2sinA\)

Chọn B

le nguyen thy nga
Xem chi tiết
Phạm Ngọc Aí Liên
Xem chi tiết
Đặng Phương Nam
Xem chi tiết
Trần Thị Loan
20 tháng 6 2015 lúc 14:47

<=> 2.cos2A - 1  + 2\(\sqrt{2}\). (cosB + cosC) = 3

<=> 2.cos2A +  2\(\sqrt{2}\). 2. cos\(\frac{B+C}{2}\). cos\(\frac{B-C}{2}\)  - 4 = 0

<=> 2. cos2A +  4\(\sqrt{2}\).sin \(\frac{A}{2}\). cos\(\frac{B-C}{2}\)  - 4 = 0 (Do  cos\(\frac{B+C}{2}\)=  cos\(\frac{180^o-A}{2}\)= sin \(\frac{A}{2}\))

Nhận xét: tam giác ABC tù nên cosA > 0;  Mà cosA \(\le\) 1   => cos2\(\le\) cosA

Có: cos\(\frac{B-C}{2}\) \(\le\) 1

=>0 =  2. cos2A +  4\(\sqrt{2}\).sin \(\frac{A}{2}\). cos\(\frac{B-C}{2}\)  - 4 \(\le\) 2cosA +   4\(\sqrt{2}\).sin \(\frac{A}{2}\). cos\(\frac{B-C}{2}\)  - 4

= 2.(1 - 2sin2 \(\frac{A}{2}\)) +  4\(\sqrt{2}\).sin \(\frac{A}{2}\)  - 4 = -2. (2sin2 \(\frac{A}{2}\)-  2\(\sqrt{2}\).sin \(\frac{A}{2}\) + 1) =  -2. \(\left(\sqrt{2}sin\frac{A}{2}-1\right)^2\)\(\le\)0

=>   \(\sqrt{2}sin\frac{A}{2}-1=0\) <=> \(sin\frac{A}{2}=\frac{1}{\sqrt{2}}\)<=> A/2 = 45o

=> góc A = 90o

Dấu "=" xảy ra  <=> cos\(\frac{B-C}{2}\) = 1 => B - C = 0 => B = C mà A = 90o

=> B = C = 45o

vậy..........

 

 

Tùng Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 2 2022 lúc 22:14

Chọn A

zero
8 tháng 2 2022 lúc 22:15

A

Uyên  Thy
8 tháng 2 2022 lúc 22:15

Câu A. cosB+cosC=2cosA

Bình Trần Thị
Xem chi tiết
Kuroba Shinichi
Xem chi tiết