Trong mặt phẳng phức Oxy, số phức z thỏa điều kiện nào thì có điểm biểu diễn số phức thuộc phần tô màu như hình vẽ
A. 1 ≤ |z| ≤ 2 và phần ảo dương.
B. 1 ≤ |z| ≤ 2 và phần ảo âm.
C. 1 < |z| < 2 và phần ảo dương.
D. 1 < |z| < 2 và phần ảo âm.
Trên mặt phẳng tọa độ tìm tập hợp điểm biểu diễn các số phức z thỏa mãn điều kiện:
a) Phần thực của z bẳng -2
b) Phần ảo của z bẳng 3
c) Phần thực của z thuộc khoảng (-1;2)
d) Phần ảo của z thuộc đoạn [1;3]
e) Phần thực và phần ảo đều thuộc đoạn [-2; 2]
a) Tập hợp các điểm thuộc đường thẳng x = -2
b) Tập hợp các điểm thuộc đường thẳng y = 3
c) Tập hợp các điểm thuộc mặt phẳng nằm giữa hai đường thẳng song song x = -1 và x = 2 (hình có gạch sọc)
d) Phần mặt phẳng giới hạn bởi các đường thẳng song song y = 1 và y = 3( kể cả các điểm thuộc hai đường thẳng đó).
e) Các điểm thuộc hình chữ nhật với các cạnh nằm trên các đường thằng x = -2, x = 2 , y = -2, y = 2.
Trên mặt phẳng tọa độ, tìm tập hợp điểm biểu diễn các số phức z thỏa mãn điều kiện :
a) Phần thực của z bằng -2
b) Phần ảo của z bằng 3
c) Phần thực của z thuộc khoảng (-1; 2)
d) Phần ảo của z thuộc đoạn [1; 3]
e) Phần thực và phần ảo của z đểu thuộc đoạn [-2; 2]
Giả sử z = x + yi (x, y ε R), khi đó trên mặt phẳng toạ độ Oxy, điểm M(x;y) biểu diaãn số phức z.
a) Phần thực của z bằng -2, tức là x = -2, y ε R.
Vậy tập hợp các điểm biểu diễn số phức z là đường thẳng x = -2 trên mặt phẳng toạ độ Oxy
b) Ta có x ε R và y = 3
Vậy tập hợp điểm biểu diễn số phức z là đường thẳng y = 3 trên mặt phẳng Oxy.
c) Ta có x ε (-1;2) và y ε R.
Vậy tập hợp số phức z cần tìm là các điểm nằm giữa hai đường thẳng x = -1 và x = 2 trên mặt phẳng Oxy
d) Ta có x ε R và y ε [1;3]
Vậy tập hợp các điểm cần tìm là phần mặt phẳng nằm giữa hai đường thẳng y = 1 và y = 3
e) Ta có x ε [-2; 2] và y ε [-2; 2]
Vậy tập hợp các điểm cần tìm là phần mặt phẳng thuộc hình vuông (kể cả cạnh) được vẽ trên hình e (phần gạch sọc).
Gọi H là hình biểu diễn tập hợp các số phức z trong mặt phẳng tọa độ Oxy sao cho 2 z - z ≤ 3 và số phức z có phần ảo không âm. Tính diện tích hình H
A. 3π
B. 3 π 4
C. 3 π 2
D. 6π
Gọi H là hình biểu diễn tập hợp các số phức z trong mặt phẳng tọa độ Oxy sao cho 2 z - z ¯ ≤ 3 và số phức z có phần ảo không âm. Tính diện tích hình H
A. 3 π
B. 3 π 4
C. 3 π 2
D. 6 π
Chọn C.
Phương pháp: Xác định hình H từ đó tính diện tích.
Trên mặt phẳng tọa độ, tìm tập hợp biểu diễn của các số phức z thỏa mãn điều kiện: Phần thực của z thuộc đoạn [-1; 2], phần ảo của z thuộc đoạn [0; 1]
Phần thực của z thuộc đoạn [-1; 2]
⇔ -1 ≤ x ≤ 2.
phần ảo của z thuộc đoạn [0; 1]
⇔ 0 ≤ y ≤ 1.
Vậy tập hợp các điểm biểu diễn số phức z là hình gạch sọc dưới đây:
Trên mặt phẳng tọa độ tìm tập hợp điểm biểu diễn các số phức z thỏa mãn điều kiện:
a) Phần thực của z bằng phần ảo của nó ;
b) Phần thực của z là số đối của phần ảo của nó ;
c) Phần ảo của z bằng hai lần phần thực của nó cộng với 1;
d) Modun của z bằng 1, phần thực của z không âm.
a) Đường phân giác của góc phần tư thứ nhất và góc pần tư thứ ba.
b) Đường phân giác của góc phần tư thứ hai và góc phần tư thứ tư.
c) Đường thẳng y = 2x + 1
d) Nửa đường tròn tâm O bán kính bằng 1, nằm bên phải trục Oy.
Hãy biểu diễn các số phức z trên mặt phẳng tọa độ, biết |z| ≤ 2 và:
a) Phần thực của z không vượt quá phần ảo của nó;
b) Phần ảo của z lớn hơn 1;
c) Phần ảo của z nhỏ hơn 1, phần thực của z lớn hơn 1.
Trong mặt phẳng tọa độ Oxy, gọi (H) là phần mặt phẳng chứ các điểm biểu diễn các số phức z thỏa mãn z 16 và 16 z có phần thực và phần ảo đều thuộc đoạn [0;1]. Tính diện tích S của (H)
A. S = 32 6 - π
B. S = 16 4 - π
C. S = 256
D. S = 64 π
Trong mặt phẳng tọa độ Oxy, gọi (H) là phần mặt phẳng chứa các điểm biểu diễn các số phức z thỏa mãn z 16 và z 16 có phần thực và phần ảo đều thuộc đoạn [ 0 ; 1 ] . Tính diện tích S của (H)
A. S = 256
B. S = 64 π
C. S = 16 4 − π
D. S = 32 6 − π
Đáp án D.
Gọi z = x + y i x , y ∈ ℝ ⇒ M x ; y biểu diễn số phức z
Do z 16 có phần thực là và phần ảo thuộc đoạn 0 ; 1 nên
0 ≤ x 16 ≤ 1 0 ≤ y 16 ≤ 1 ⇒ 0 ≤ x , y ≤ 16
Mặt khác 16 z ¯ = 16 z z 2 = 16 x + y i x 2 + y 2 có phần thực là và phần ảo thuộc đoạn 0 ; 1 nên
x , y ≤ 0 16 x x 2 + y 2 ≤ 1 16 y x 2 + y 2 ≤ 1 ⇔ x 2 + y 2 − 16 x ≥ 0 x 2 + y 2 − 16 y ≥ 0
Minh họa hình vẽ, ta có phương trình đường thẳng OA là y = x , phương trình
x 2 + y 2 − 16 x = 0 ⇒ y = 16 x − x 2 y ≥ 0
Diện tích cần tìm là miền nằm ngoài 2 đường tròn x 2 + y 2 − 16 x = 0 và x 2 + y 2 − 16 y = 0 và nằm trong hình vuông MNPQ.
Diện tích hình quạt I O A ⏜ là S q u a t = 1 4 π 8 2 = 16 π ; S Δ I O A = 32
Diện tích phần giới hạn bởi cung OA và dây OA là S = 16 π − 32
Suy ra diện tích miền giao nhau của 2 đường tròn là: S G = 2 S = 32 π − 2 .
Diện tích cần tìm là:
S c t = 16 2 − π 8 2 + 32 π − 2 = 192 − 32 π = 32 6 − π