Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 12 2017 lúc 8:44

Đáp án B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 12 2018 lúc 11:06

Đáp án A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 5 2018 lúc 15:41

* Ta có: 

u 2 = 2 u 1 = 2.2 = 4 = 2 2 u 3 = 2 u 2 = 2.4 = 8 = 2 3 u 4 = 2 u 3 = 2.8 = 16 = 2 4 u 5 = 2 u 4 = 2.16 = 32 = 2 5

Từ các số hạng đầu tiên, ta dự đoán số hạng tổng quát u n có dạng:  u n = 2 n       ∀ n ≥ 1 ∗  

* Ta dùng phương pháp chứng minh quy nạp để chứng minh cộng thức (*)  đúng.

Với n=1 ; có: u 1   =   2 1   =   2 (đúng). Vậy (*) đúng với n= 1

Giả sử (*)  đúng với n= k , có nghĩa ta có: u k   =   2 k (2)

Ta cần chứng minh (*) đúng với n = k+1. Có nghĩa là ta phải chứng minh: u k + 1   =   2 k +   1 .

Thật vậy từ hệ thức xác định dãy số và theo (2) ta có:

u k + 1   =   2 u k   =   2 .   2 k     =   2 k + 1

Vậy (*) đúng với n = k+1.  Kết luận (*)  đúng với mọi số nguyên dương n.

Chọn đáp án B.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 11 2018 lúc 11:48

Ta có:

u 2 = u 1 + 2 = 3 + 2 = 5.  

u 3 = u 2 + 2 = 5 + 2 = 7.  

u 4 = u 3 + 2 = 7 + 2 = 9.  

u 5 = u 4 + 2 = 9 + 2 = 11.  

Từ các số hạng đầu trên, ta dự đoán số hạng tổng quát u n có dạng:

u n = 2 n + 1     ∀ n ≥ 1 ∗  

Ta dùng phương pháp chứng minh quy nạp để chứng minh công thức (*)  đúng.

Với n =1 ; u 1   = 2 . 1   + 1   =   3 (đúng). Vậy (*) đúng với n =1

Giả sử (*)  đúng với n =k.  Có nghĩa ta có: u k   =   2 k   + 1 (2)

Ta cần chứng minh (*)  đúng với n = k+1 - có nghĩa là ta phải chứng minh:

u k + 1 = 2(k+1)+1= 2k + 3

Thật vậy từ hệ thức xác định dãy số và theo (2) ta có:

u k + 1 = u k +2 = 2k +1 +2 = 2k + 3

Vậy (*) đúng khi n = k+1 .

Kết luận (*) đúng với mọi số nguyên dương n.

Đáp án B

Phạm Minh Hà
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Lê Thị Thục Hiền
23 tháng 12 2021 lúc 16:27

\(u_{n+1}=\sqrt{1+u_n^2}\left(1\right)\)

\(u_1=3=\sqrt{9}\)

\(u_2=\sqrt{1+u_1^2}=\sqrt{10}\)

\(u_3=\sqrt{1+u_2^2}=\sqrt{11}\)

...

Dự đoán công thức:\(u_n=\sqrt{n+8}\),\(n\ge1\) (*)

Thật vậy 

+)\(n=1,(*)\)\(\Leftrightarrow u_1=3\) (lđ)

+)Giả sử (*) đúng với mọi \(n=k,k>1\)

\((*)\Leftrightarrow u_k=\sqrt{k+8}\)

+)\(n=k+1,\) thay vào (1) có: \(u_{k+2}=\sqrt{1+u^2_{k+1}}=\sqrt{1+\left(\sqrt{1+u_k^2}\right)^2}=\sqrt{2+u^2_k}=\sqrt{2+k+8}=\sqrt{10+k}\)

\(\Rightarrow\)(*) đúng với n=k+1

Vậy CTSHTQ: \(u_n=\sqrt{n+8}\)\(n\ge1\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 11 2017 lúc 18:19

Đáp án A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 6 2017 lúc 6:44

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 8 2017 lúc 7:48

u 3 = 2 3 + 1 = 16

Đáp án C