Cho hình chóp tứ giác đều S.ABCD cạnh đáy bằng cạnh bên bằng a. Khoảng cách từ AD tới (SBC) bằng:
A. a 2 3
B. a 2 3
C. a 3 2
D. không phải các kết quả A, B, C
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, SA = SB = SC = SD = a sqrt(3). Tính khoảng cách từ tâm O của hình vuông ABCD đến mặt bên (SBC)
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 1 cạnh bên hợp với mặt đáy một góc 60 o Khoảng cách từ O đến mặt phẳng (SBC) bằng
A. 1 2
B. 2 2
C. 7 2
D. 42 14
Chọn D.
Lời giải. Xác định
Gọi M là trung điểm BC, kẻ OK ⊥ SM.
Tam giác vuông SOM
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 1, cạnh bên hợp với mặt đáy một góc 60 ° . Khoảng cách từ O đến mặt phẳng (SBC) bằng
A. 1 2
B. 2 2
C. 7 2
D. 42 14
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a và khoảng cách từ A đến (SBC) bằng a 6 3 . Thể tích của hình chóp bằng:
A. 6 24 a 3 B. 2 9 a 3
C. 2 8 a 3 D. 2 6 a 3
Chọn D.
Gọi H, M, N theo thứ tự là các trung điểm của các cạnh AC, BC, AD.
Kẻ NI ⊥ SM (I ∈ SM). Để ý rằng AN // (SBC)
Do đó NI = d(N,(SBC)) = d(A,(SBC)) = a 6 3
Từ hai tam giác đồng dạng SHM và NIM ta tính được SH.
Cho hình chóp tứ giác đều S.ABCD, có cạnh đáy bằng a và thể tích khối chóp bằng a 3 2 6 . Tính theo a khoảng cách từ điểm A đến mặt phẳng (SBC)
A . a 6 2
B . a 6 3
C . a 6 6
D . a 6
Đáp án B
Gọi M là trung điểm BC; Gọi d là khoảng cách từ A tới (SBC)
Ta có:
Cho hình chóp tứ giác đều S.ABCD, có cạnh đáy bằng a và thể tích khối chóp bằng a 3 2 6 . Tính theo a khoảng cách từ điểm A đến mặt phẳng (SBC)
A. a 6 3 .
B. a 6 3 .
C. a 6 6 .
D. a 6 .
Đáp án B.
Gọi M là trung điểm BC ; Gọi d là khoảng cách từ A tới (SBC)
S O = 3 V S . A B C D d t A B C D = 3 a 3 2 6 a 2 = a 2
S M = S O 2 + M O 2 = a 2 2 + a 2 4 = a 3 2
d t S B C = 1 2 S M . B C = 1 2 a 3 2 . a = a 2 3 4
⇒ d = 3 V A . S B C d t S B C = 3 V S . A B C D 2 d t S B C = 3 a 3 2 2.6. a 2 3 4 = a 6 3
Cho hình chóp tứ giác đều S.ABCD có đáy là hình vuông tâm O cạnh 2a. Thể tích khối chóp S.ABCD bằng 4 a 3 . Tính khoảng cách từ điểm O tới mặt bên của hình chóp.
A. a 2 2
B. 3 a 4
C. 3 a 10 10
D. a 10 10
Chọn C.
Phương pháp
Sử dụng quan hệ vuông góc giữa đường thẳng và mặt phẳng để xác định khoảng cách
Ta tính SO dựa vào công thức thể tích hình chóp, tính OH dựa vào hệ thức lượng trong tam giác vuông.
Cách giải:
Xét tam giác SOM vuông tại M có OH là đường cao nên theo hệ thức lượng trong tam giác vuông ta có
Cho hình chóp tứ giác đều S.ABCD có đáy là hình vuông tâm O cạnh 2a. Thể tích khối chóp S.ABCD bằng 4 a 3 . Tính khoảng cách từ điểm O tới mặt bên của hình chóp.
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a và chiều cao bằng a 2 . Tính khoảng cách từ tâm O của đáy ABCD đến một mặt bên theo a.