Giải phương trình: 20 ( x - 2 x + 1 ) 2 - 5 ( x + 2 x - 1 ) 2 + 48 x 2 - 4 x 2 - 1 = 0 ta được các nghiệm x 1 , x 2 với x 1 < x 2 . Tính 3 x 1 - x 2
A. 25 3
B. -1
C. - 7 3
D. 1
1) Giải hệ phương trình $\left\{\begin{array}{l}2 x+y=19 \\ 3 x-2 y=11\end{array}\right.$.
2) Giải phương trình $x^{2}+20 x-21=0$.
3) Giải phương trình $x^{4}-20 x^{2}+64=0$.
3(2x+y)-2(3x-2y)=3.19-11.2
6x+3y-6x+4y=57-22
7y=35
y=5
thay vào :
2x+y=19
2x+5=19
2x=14
x=7
2/ x2+21x-1x-21=0
x(x+21)-1(x+21)=0
(x+21)(x-1)=0
TH1 x+21=0
x=-21
TH2 x-1=0
x=1
vậy x = {-21} ; {1}
3/ x4-16x2-4x2+64=0
x2(x2-16)-4(x2-16)=0
(x2-16)-(x2-4)=0
TH1 x2-16=0
x2=16
<=>x=4;-4
TH2 x2-4=0
x2=4
x=2;-2
Bài 1 :
\(\hept{\begin{cases}2x+y=19\\3x-2y=11\end{cases}\Leftrightarrow\hept{\begin{cases}4x+2y=38\\3x-2y=11\end{cases}\Leftrightarrow\hept{\begin{cases}7x=49\\2x+y=19\end{cases}}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=7\\2x+y=19\end{cases}}\)Thay vào x = 7 vào pt 2 ta được :
\(14+y=19\Leftrightarrow y=5\)Vậy hệ pt có một nghiệm ( x ; y ) = ( 7 ; 5 )
Bài 2 :
\(x^2+20x-21=0\)
\(\Delta=400-4\left(-21\right)=400+84=484\)
\(x_1=\frac{-20-22}{2}=-24;x_2=\frac{-20+22}{2}=1\)
Bài 3 : Đặt \(x^2=t\left(t\ge0\right)\)
\(t^2-20t+64=0\)
\(\Delta=400+4.64=656\)
\(t_1=\frac{20+4\sqrt{41}}{2}\left(tm\right);t_2=\frac{20-4\sqrt{41}}{2}\left(ktm\right)\)
Theo cách đặt : \(x^2=\frac{20+4\sqrt{41}}{2}\Rightarrow x=\sqrt{\frac{20+4\sqrt{41}}{2}}=\frac{\sqrt{20\sqrt{2}+4\sqrt{82}}}{2}\)
\(\hept{\begin{cases}2x+y=19\\3x-2y=11\end{cases}\hept{\begin{cases}6x+3y=57\\6x-4y=22\end{cases}\hept{\begin{cases}7y=35\\3x-2y=11\end{cases}}}}\)
\(\hept{\begin{cases}y=5\\3x-2.5=11\end{cases}\hept{\begin{cases}y=5\\3x=21\end{cases}\hept{\begin{cases}y=5\\x=7\end{cases}}}}\)
\(a=1,b=20;c=-21\)
\(\Delta=\left(20\right)^2-\left(4.1.-21\right)=484\)
\(\sqrt{\Delta}=\sqrt{484}=22\)
\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-20+22}{2}=1\left(TM\right)\)
\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=-21\left(TM\right)\)
\(3,x^4-20x^2+64=0\)
đặt \(x^2=a\)ta có pt
\(a^2-20a+64=0\)
\(a=1;b=-20;c=64\)
\(\Delta=\left(-20\right)^2-\left(4.1.64\right)=144\)
\(\sqrt{\Delta}=12\)
\(a_1=\frac{-b+\sqrt{\Delta}}{2a}=16\left(TM\right)\)
\(a_2=\frac{-b-\sqrt{\Delta}}{2a}=4\left(TM\right)\)
\(< =>x_1=\sqrt{16}=4\left(TM\right)\)
\(x_2=\sqrt{4}=2\left(TM\right)\)
vậy bộ n0 của pt là (\(4;2\))
Giải hộ mik bài này vs ạ :((
Giải phương trình: x+√(x-5)+√x+√(x^2-5x)=20
\(ĐK:x\ge5\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\\\sqrt{x-5}=b\end{matrix}\right.\left(a,b\ge0\right)\Leftrightarrow4b^2-3a^2=x-20\)
\(PT\Leftrightarrow4b^2-3a^2+a+b+ab=0\\ \Leftrightarrow4ab+4b^2-3a^2-3ab+a+b=0\\ \Leftrightarrow4b\left(a+b\right)-3a\left(a+b\right)+\left(a+b\right)=0\\ \Leftrightarrow\left(a+b\right)\left(4b-3a+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a+b=0\left(\text{loại do }a+b>0\right)\\4b-3a+1=0\left(1\right)\end{matrix}\right.\\ \left(1\right)\Leftrightarrow4\sqrt{x-5}=3\sqrt{x}-1\\ \Leftrightarrow16x-80=9x-6\sqrt{x}+1\\ \Leftrightarrow7x+6\sqrt{x}-81=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=3\\\sqrt{x}=-\dfrac{27}{7}\left(loại\right)\end{matrix}\right.\Leftrightarrow x=9\left(nhận\right)\)
Giải phương trình sau:
\(\sqrt{x-2}+1=2x-\dfrac{20}{x+2}\)
\(\sqrt{x-2}+1=2x-\dfrac{20}{x+2}\left(1\right)\)
Đk: \(x\ge2\)
\(\left(1\right)\Leftrightarrow\sqrt{x-2}-1=2x-\dfrac{20}{x+2}-2\)
\(\Leftrightarrow\dfrac{\left(x-2\right)-1}{\sqrt{x-2}+1}=\dfrac{2x\left(x+2\right)-2\left(x+2\right)-20}{x+2}\)
\(\Leftrightarrow\dfrac{\left(x-2\right)-1}{\sqrt{x-2}+1}=\dfrac{2x^2+2x-24}{x+2}\)
\(\Leftrightarrow\dfrac{x-3}{\sqrt{x-2}+1}=\dfrac{2\left(x-3\right)\left(x+4\right)}{x+2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\\dfrac{1}{\sqrt{x-2}+1}=2.\dfrac{x+4}{x+2}\left(2\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow2\left(x+4\right)\sqrt{x-2}+2\left(x+4\right)=x+2\)
\(\Leftrightarrow2\left(x+4\right)\sqrt{x-2}+x+6=0\left(3\right)\)
Ta có \(x\ge2>0\Rightarrow2\left(x+4\right)\sqrt{x-2}+x+6>0\)
Vì vậy phương trình (3) vô nghiệm. Khi đó phương trình (2) cũng vô nghiệm.
Vậy phương trình (1) có nghiệm duy nhất là \(x=3\)
Giải phương trình
\(\sqrt{x+5}+\sqrt{4-x}-\sqrt{-x^2-x+20}=3\)
giải bất phương trình sau :
a) (1-2x)(x^2-x-20)>0
b)\(\sqrt{x^2-x-2}\) \(< x-1\)
Giải phương trình
x2=x-20
mk tìm được 4 từ này thôi ko biết đúng hay ko:
rạng rỡ,sặc sỡ,tuyệt đẹp,tuyệt vời
chứng minh: 5x²+15x+20>0 với mọi x
giải phương trình: \2x\-3=\x+2\ ( phương trình chứa dấu giá trị tuyệt đối ) giải giùm tớ đi ạ
CM: 5x^2 +15x+20>0
Ta có: 5x^2 +15x +20
= 5( x^2 + 3x +4)
=5[(x^2 + 2.x.3/2 +9/4) -9/4 +4 ]
=5(x+3/2)^2 -7/4
Vì (x+3/2)^2 >0 với mọi x
=>5(x+3/2)^2 >0 với mọi x
=> 5(x+3/2)^2 - 7/4 >0 với mọi x
Giải phương trình:
\(x^2+9x+20=2\sqrt{3x+10}\)
ĐKXĐ: \(x\ge-\dfrac{10}{3}\)
\(\left(x^2+6x+9\right)+\left(3x+10-2\sqrt{3x+10}+1\right)=0\)
\(\Leftrightarrow\left(x+3\right)^2+\left(\sqrt{3x+10}-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+3=0\\\sqrt{3x+10}-1=0\end{matrix}\right.\)
\(\Leftrightarrow x=-3\)
giải phương trình:
x^(2)+8\sqrt(x+8)=5x+20
giải phương trình 3( x+2/x-1)^2 + 25(x-2/x+1)^2 - 20( x^2-4/x^2-1) =0