Giá trị của biểu thức Q = a 3 + b 3 biết a + b = 5 và ab = -3
A. Q = 170
B. Q = 140
C. Q = 80
D. Q = -170
a, Biết a^3+b^3=3ab-1. Tính giá trị biểu thức A=a+b.
b, Biết a^3-b^3=3ab+1. Tính giá trị biểu thức A=a-b.
Giá trị của biểu thức a-b biết:
\(\frac{2a+2}{3}+\frac{a-8}{3}=b\)
\(\frac{2a+2}{3}+\frac{a-8}{3}=b\)
\(\frac{2a+2+a-8}{3}=b\)
\(\frac{3a-6}{3}=b\)
\(\frac{3\left(a-2\right)}{3}=b\)
a - 2 = b
a - b = 2
Giá trị của biểu thức : \(P=a^3+b^3+3ab\) biết \(a+b=1\)
\(P=a^3+b^3+3ab\\ =\left(a+b\right)^3-3ab\left(a+b\right)+3ab\\ =\left(a+b\right)^3-\left[3ab\left(a+b\right)-3ab\right]\\ =\left(a+b\right)^3-3ab\left(a+b-1\right)\\ Thay\text{ }a+b=1,ta\text{ }được:\\P =1^3-3ab\left(1-1\right)=1\)
\(P=a^3+b^3+3ab=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\)
\(=a^2-ab+b^2+3ab=a^2+2ab+b^2=\left(a+b\right)^2=1^2=1\)
Cho biểu thức A=\(\frac{x+3}{x^2-6x+9}vàB=\frac{x+3}{x}+\frac{1}{x-3}+\frac{12-x^2}{x^2-3x}\)
a)Tình giá trị của biểu thức A khi x=5
b)Rút gọn biểu thức B
c)Tìm giá trị nguyên của x để biểu thức P nhận giá trị nguyên , biết P=A:B
MỌI NGƯỜI GIÚP EM VỚI Ạ
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
cho biết: (a/2)-b=c:(2/3) va a,b,c khác 0. Tính giá trị của biểu thức: Q=2018-(c/a-1/3)^3.(a/b-2)^3.(2/3+b/c)^3
cho biểu thức B: B=\(\left(\frac{3-x}{x+3}\times\frac{x^2+6x+9}{x^2-9}\right)\div\frac{3x^2}{x+3}\)
a) Rút gọn biểu thức
b) Tính giá trị của biểu thức B, biết \(x^2-4x+3=0\)
c) tìm giá trị của x để B>0
\(ĐKXĐ:\hept{\begin{cases}x\ne\pm3\\x\ne0\end{cases}}\)
a) \(B=\left(\frac{3-x}{x+3}\cdot\frac{x^2+6x+9}{x^2-9}\right):\frac{3x^2}{x+3}\)
\(\Leftrightarrow B=\left(\frac{3-x}{x+3}\cdot\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}\right):\frac{3x^2}{x+3}\)
\(\Leftrightarrow B=\frac{\left(3-x\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}\cdot\frac{x+3}{3x^2}\)
\(\Leftrightarrow B=-\frac{x+3}{3x^2}\)
b) Khi \(x^2-4x+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x=3\left(ktm\right)\end{cases}}\)
\(\Leftrightarrow x=1\)
\(\Leftrightarrow B=-\frac{1+3}{3.1^2}=-\frac{4}{3.}\)
c) Để B > 0
\(\Leftrightarrow-\frac{x+3}{3x^2}>0\)
\(\Leftrightarrow\frac{x+3}{3x^2}< 0\)
\(\Leftrightarrow x+3< 0\) (Do 3x2 > 0; loại giá trị = 0)
\(\Leftrightarrow x< -3\)
Vậy để \(B>0\Leftrightarrow x< -3\)
Cho biểu thức:
\(B=\left(\frac{3-x}{x+3}.\frac{x^2+6x+9}{x^2-9}\right):\frac{3x^2}{x+3}\)
a) Rút gọn biểu thức B
b) Tính giá trị của biểu thức B, biết \(x^2-4x+3=0\)
c) Tìm giá trị của x để B>0
cho biểu thức A = \(\left(\frac{2x}{x-3}-\frac{x-1}{x+3}+\frac{x^2+1}{9-x^2}\right):\left(1-\frac{x-1}{x+3}\right)\)
a) rút gọn biểu thức
b) tính giá trị biểu thức A biết | x - 5 | = 2
c) tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên
Câu 3: Tính giá trị của biểu thức C = 5a − 4b + 7a + 8 . Biết a-b=8.
Câu 4: Tính giá trị của biểu thức D =4a + 10b - b+ 2a. Biết 2a+3b=12
Câu 5: Tính giá trị của biểu thức D=21a + 9b — 6a — 4b. Biết 3a+b=18
Câu 5:
\(D\left(2\right)=21a+9b-6a-4b\)
\(D\left(2\right)=\left(21a-6a\right)+\left(9b-4b\right)\)
\(D\left(2\right)=15a+5b\)
Mà: \(3a+b=18\Rightarrow b=18-3b\)
\(\Rightarrow D\left(2\right)=15a+5\left(18-3b\right)\)
\(D\left(2\right)=15a+90-15a\)
\(D\left(2\right)=90\)
Vậy: ...
Câu 4:
\(D\left(1\right)=4a+10b-b+2a\)
\(D\left(1\right)=\left(4a+2a\right)+\left(10b-b\right)\)
\(D\left(1\right)=6a+9b\)
Mà: \(2a+3b=12\Rightarrow a=\dfrac{12-3b}{2}\)
\(\Rightarrow D\left(1\right)=6\left(\dfrac{12-3b}{2}\right)+9b\)
\(D\left(1\right)=\dfrac{6\left(12-3b\right)}{2}+9b\)
\(D\left(1\right)=3\left(12-3b\right)+9b\)
\(D\left(1\right)=36-9b+9b\)
\(D\left(1\right)=36\)
Vậy: ...
Câu 3:
Sửa đề: \(C=5a-4b+7a-8b\)
\(C=\left(5a+7a\right)-\left(4b+8b\right)\)
\(C=12a-12b\)
\(C=12\left(a-b\right)\)
\(C=12\cdot8\)
\(C=96\)
Vậy: ...