1 tam giác đều có đường cao là 3 cm, tính chu vi
Chu vi 1 tam giác là 60 cm. Các đường cao có độ dài là 12 cm, 15 cm, 20 cm. Tính độ dài mỗi cạnh của tam giác đó
Chu vi 1 tam giác là 60 cm. Các đường cao có độ dài là 12 cm, 15 cm, 20cm. Tính độ dài mỗi cạnh tam giác đó
Gọi 3 cạnh của tam giác có độ dài là x, y, z
⇒⇒ x+y+z=60x+y+z=60
Như ta đã học, diện tích tam giác =12.h.a=12.h.a
Trong đó a là một cạnh của tam giác; h là chiều cao hạ từ một đỉnh lên cạnh a
Áp dụng vào bài này ta có: 12.12.x=12.15.y=12.20.z12.12.x=12.15.y=12.20.z
Vì bài này 3 cạnh có thể coi như nhau, nên có thể hoán đổi vị trí của chúng
Rút ra thay vào, ta được tam giác thỏa mãn yêu cầu bài toán có 3 cạnh là 36cm;2,4cm;21,6cm
Cho tam giác đều ABC, hai đường cao BN,CM
a) CM tứ giác BMNC là hình thang cân
b) Tính chu vi hình thang BMNC, biết chu vi tam giác ABC là 24dm
Vẽ hình luôn giúp mình với(╹◡╹)♡
a) Xét ∆ vuông ANC và ∆ vuông AMB ta có :
AB = AC ( ∆ABC đều)
A chung
=> ∆ANC = ∆AMB (ch-gn)
=> AN = AM
=> ∆AMN cân tại A
=> ANM = \(\frac{180°-BAC}{2}\)= \(\frac{180°-60°}{2}\)=\(60°\)
Mà ∆ABC đều
=> ABC = 60°
=> ABC = ANM = 60°
Mà 2 góc này ở vị trí đồng vị
=> NM//BC
=> NMCB là hình thang
Mà ∆ABC đều
=> BAC = ABC = ACB
=> NMCB là hình thang cân
b) Vì chu vi ∆ABC = 24dm
=> AB = AC = BC = 8cm
Vì ∆AMN cân tại A (cmt)
=> ∆AMN đều
=> MN = AM = AN
Mà BN là đường cao ∆ đều ABC
=> BN đồng thời là trung tuyến ∆ABC
=> AN = \(\frac{1}{2}Ac\)
=> MN = AN = \(\frac{1}{2}AC\:=\:\frac{8}{2}=4=NC\)
Vì BMNC là hình thang cân
=> BM = NC = AN = 4dm
Chu vi hình thang BMNC là :
4 + 4 + 4 + 8 = 20dm
Cho tam giác đều ABC, 2 đường cao BN,CM
a) C/m tứ giác BMNC là hình thang cân
b) Tính chu vi của hình thang BMNC, biết chu vi tam giác ABC = 24dm.
a. trong tam giác đều đường cao cũng là đường trung tuyến nen:
M;N lần lượt là trung điểm của ac và ab
+
=> AM LÀ dường trung bình của tam giác abc
=>AM//BC hay MNBC là hình thang 1
Do AB là tam giác đều nên BN=CM 2
TỪ 1 và 2 suy ra MNBC LÀ HÌNH THANG CÂN ( đpcm)
b.
do tam giác ABC dều nên AB=BC=AC=24:3=8 dm
=> MN=4 ; MB=4; NC=4
CHU VI HÌNH THANG LÀ:
4+4+4+8=20(dm)
cho tam giác ABC đều có đường cao \(3\sqrt{3}cm\). Vậy chu vi hình tam giác là......
bạn lên đây nè
https://vi.wikipedia.org/wiki/Tam_gi%C3%A1c_%C4%91%E1%BB%81u
Cho tam giác ABC vuông tại A, kẻ đường cao AH. Biết chu vi tam giác AHB là 30 cm, chu vi tam giác AHC là 40 cm. Tính chu vi tam giác ABC.
Ta có hình vẽ
Ta có : ΔABH + ΔACH = ΔABC
Hay: 30 + 40 = ΔABC
=> ΔABC = 70 cm
mk k bít dug hay sai đâu đó...
mk chỉ thử lm thui ak^^^
tam giác abc có đường cao là 5.196 cm. tính chu vi tam giác đó
cho tam giác ABC vuông tại A đường cao AH ; biết chu vi của tam giác ABC là 50 cm ; chu vi của tam giác ABH là 30 cm : chu vi của tam giác ACH bằng 40 cm tính AH
Theo bài ra ta có
AB + AH + BH = 30
AC + CH + AH = 40
AB + BC + AC = 50
Khi đó AB + AH + BH + AC + CH + AH = 70
=> AB + AC + (BH + CH) + 2AH = 70
=> AB + AC + BC + 2AH = 70
=> 50 + 2AH = 70
=> AH = 10
Vậy AH = 10 cm
cho tam giác ABC có độ dài đường cao là 3 cm,4 cm,6 cm.
Tính chu vi tam giác biết cạnh dài nhất ít hơn tổng 2 cạnh còn lại 1 cm
Gọi các cạnh tương ứng với các đường cao 3 cm; 4cm; 6 cm là a, b, c ( >0; cm )
Ta có: Diện tích của tam giác là:
\(\frac{1}{2}.3.a=\frac{1}{2}.4.b=\frac{1}{2}.6.c\)
=> \(3a=4b=6c\)
=> \(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}\)
Độ dài đường cao tỉ lệ nghịch với độ dài cạnh đáy tương ứng => a là cạnh dài nhất
=> b + c - a = 1
Áp dụng dãy tỉ số bằng nhau ta có: \(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}=\frac{b+c-a}{\frac{1}{6}+\frac{1}{4}-\frac{1}{3}}=\frac{1}{\frac{1}{12}}=12\)
=> a = \(\frac{1}{3}.12=4\)cm
b = 3 cm
c = 2 cm
=> Chu vi tam giác là: a + b + c = 4 + 3 + 2 = 9 cm