Chứng minh rằng 1+1/1+1/3+......+1/21999>1000
Chứng tỏ rằng
1+1/2+1/3+.......+1/21999>1000
chứng minh rằng: 21999<7714
chứng minh rằng: 21999<7714
CHứng minh rằng 1 + \(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2^{1999}}>1000\)
Chứng minh rằng luôn tồn tại số tự nhiên n để 1+1/2+/1/3+...+1/n>1000
Cho M = 1/101+/102+...+1/200. Chứng minh rằng : 5/8<M<3/4
chứng minh rằng : 1+1/2+1/3+.....+1/2^1999>1000
Cho A = \(\dfrac{1001}{1000^2+1}\)+\(\dfrac{1001}{1000^2+2}\)+\(\dfrac{1001}{1000^2+3}\)+...+\(\dfrac{1001}{1000^2+1000}\)
Chứng minh rằng 1<\(^{A^2}\)<4
Tổng A có 1000 số hạng.
Vậy
Chúc bạn học tốt.
Tổng A có 1000 số hạng
A>(1001/1000^2+1000)*1000=1001*1000/1000*(1000+1)=1
A<(1001/1000^2)*1000=1001/1000=1+1/1000<1
Vậy 1<A<2 nên 1<A^2<4
Chứng minh rằng: 1/32+1/42+...+1/10002<1/2
Chứng minh rằng luôn luôn tồn tại số tự nhiên n để 1+1/2+1/3+...+1/n>1000
Ta chọn n=21999
Ta có:1+1/2+1/3+...+1/n=1+1/2+(1/3+1/22)+(1/5+1/6+1/7+1/2^3)+(1/9+...+1/2^4)+...+(1/21998+1+...+1/21999)>1+1/2+1/22.2+1/23.22+1/24.23+...+1/21999.21998=1+1/2.1999=1000,5>1000(đpcm)