H Cho hình lập phương . Gọi H ' là hình bát diện đều có các đỉnh là tâm các mặt của H . Tính tỉ số thể tích của H ' và H .
A. 1 2
B. 1 4
C. 1 6
D. 1 12
Cho hình lập phương H . Gọi H ' là hình bát diện đều có các đỉnh là tâm các mặt của H . Tính tỉ số thể tích của H ' và H .
A. 1 2
B. 1 4
C. 1 6
D. 1 12
Cho hình lập phương (H). Gọi (H’) là hình bát diện đều có các đỉnh là tâm các mặt của (H). Tính tỉ số diện tích toàn phần của (H) và (H’).
Gọi a là cạnh của hình lập phương ABCD. A 1 B 1 C 1 D 1 ;
⇒ Diện tích toàn phần của hình lập phương (H) là: SH = 6.a2 (đvdt).
Gọi tâm các mặt lần lượt là E, F, M, N, P, Q như hình vẽ.
⇒ (H’) là bát diện đều EMNPQF.
+ Áp dụng định lí pytago vào tam giác vuông AA’D ⇒ A’D = a√2
+ EM là đường trung bình của ΔBA’D
⇒ (H’) là bát diện đều gồm 8 mặt là các tam giác đều cạnh bằng
⇒ Diện tích một mặt của (H’) là:
⇒ Diện tích toàn phần của (H’) là:
Vậy tỉ số diện tích cần tính là:
Cho hình lập phương (H). Gọi (H’) là hình bát diện đều có các đỉnh là tâm các mặt của (H). Tính tỉ số diện tích toàn phần của (H) và (H’).
Gọi a là cạnh của hình lập phương ABCD.A1B1C1D1;
⇒ Diện tích toàn phần của hình lập phương (H) là: SH = 6.a2 (đvdt).
Gọi tâm các mặt lần lượt là E, F, M, N, P, Q như hình vẽ.
⇒ (H’) là bát diện đều EMNPQF.
+ Áp dụng định lí pytago vào tam giác vuông AA’D ⇒ A’D = a√2
+ EM là đường trung bình của ΔBA’D
QUẢNG CÁO
⇒ (H’) là bát diện đều gồm 8 mặt là các tam giác đều cạnh bằng
⇒ Diện tích một mặt của (H’) là:
⇒ Diện tích toàn phần của (H’) là:
Vậy tỉ số diện tích cần tính là:
Cho hình lập phương (H). Gọi (H') là hình bát diện đều có các đỉnh là tâm các mặt của (H). Tính tỉ số diện tích toàn phần của (H) và (H') ?
Cho hình lập phương ABCD.A’B’C’D’ . Gọi E, F, G, I, J, K là tâm của các mặt của nó. Khi đó các đỉnh E, F, G, I, J, K tạo thành hình bát diện đều EFGIJK.
Đặt AB = a, thì
Diện tích tam giác đều (EFJ) bằng .
Suy ra diện tích toàn phần của hình bát diện (H’) bằng . Diện tích toàn phần của hình lập phương (H) bằng . Do đó tỉ số diện tích toàn phần của (H) và (H') bằng
.
Cho hình tứ diện đều (H). Gọi (H') là hình tứ diện đều có các đỉnh là tâm các mặt của (H). Tính tỉ số diện tích toàn phần của (H') và (H).
A. 1 4
B. 1 8
C. 1 9
D. 1 27
Đáp án C.
Đặt (H) là hình tứ diện đều ABCD, cạnh bằng A. Gọi E ; F ; I ; J lần lượt là tâm của các mặt A B C ; A B D ; A C D ; B C D .
Kí hiệu như hình vẽ.
Ta có M E M C = M F M D = 1 3 ⇒ E F C D = 1 3 ⇒ E F = C D 3 = a 3 .
Vậy tứ diện là tứ diện đều có cạnh bằng a 3 .
Tỉ số thể tích của diện tích toàn phần tứ diện đều và tứ diện đều ABCD là a 3 a 2 = 1 9
Cho khối đa diện (H) có các đỉnh là tâm các mặt bên của một hình lập phương có cạnh bằng 4. Xét hình nón tròn xoay (N) đi qua tất cả các đỉnh của đa diện (H), đỉnh và tâm đáy của (N) lần lượt là hai đỉnh của đa diện (H) nằm trên hai mặt bên đối lập nhau của hình lập phương (hình vẽ). Thể tích V của khối nón tròn xoay (N) bằng
A. 256 π
B. 64 π
C. 64 π 3
D. 16 π 3
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 2 a 2 Gọi S là tổng diện tích tất cả các mặt của bát diện có các đỉnh là tâm của các mặt của hình lập phương ABCD.A'B'C'D' Khi đó
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 2 a 2 . Gọi S là tổng diện tích tất cả các mặt của bát diện có các đỉnh là tâm của các mặt của hình lập phương ABCD.A'B'C'D'. Khi đó
Cho hình lập phương A B C D . A ' B ' C ' D ' có cạnh bằng 2 a 2 . Gọi S là tổng diện tích tất cả các mặt của bát diện có các đỉnh là tâm của các mặt của hình lập phương A B C D . A ' B ' C ' D ' Khi đó
A. S = 4 a 2 3
B. S = 8 a 2
C. S = 16 a 2 3
D. S = 8 a 2 3
Đáp án D
Cạnh của bát diện đều là x = 2 a → S = 8. 2 a 2 3 4 = 8 a 2 3