Cho dãy số u n thỏa mãn u 1 = 2018 ; u n + 1 = u n + n 2 với n. Có bao nhiêu số nguyên dương n thỏa mãn u n ≤ 330368
A. 2017.
B. 100.
C. 101.
D. 2018.
Cho dãy số \(u_n\) thỏa mãn: \(\left\{{}\begin{matrix}u_1=2018\\u_{n+1}=\dfrac{u_n}{\sqrt{1+u_n^2}}\end{matrix}\right.\). Tìm giá trị nhỏ nhất của n để \(u_n< \dfrac{1}{2018}\)
\(u_{n+1}^2=\dfrac{u_n^2}{1+u_n^2}\Rightarrow\dfrac{1}{u_{n+1}^2}=\dfrac{1}{u_n^2}+1\)
Đặt \(\dfrac{1}{u_n^2}=v_n\Rightarrow\left\{{}\begin{matrix}v_1=\dfrac{1}{2018^2}\\v_{n+1}=v_n+1\end{matrix}\right.\)
\(v_n\) là cấp số cộng với công sai d=1 \(\Rightarrow v_n=\dfrac{1}{2018^2}+n-1\)
\(\Rightarrow u_n^2=\dfrac{1}{v_n}=\dfrac{1}{n+\dfrac{1}{2018^2}-1}\)
\(u_n^2< \dfrac{1}{2018^2}\Rightarrow\dfrac{1}{n+\dfrac{1}{2018^2}-1}< \dfrac{1}{2018^2}\Rightarrow n...\)
Cho hai số phức u, v thỏa mãn u = v = 10 và 3 u - 4 v = 2018 . Tính M = 4 u + 3 v
A. M = 2982
B. M = 50
C. M = 2018
D. M = 482
Dãy số thỏa mãn với mọi . Tính lim un
.
Cho dãy số thực: \(a_1,a_2,a_3,...............,a_{2018}\) thỏa mãn: \(a_1^1+a^2_2+a^3_3+....................+a_{2018}^{2018}=1009\). CHứng minh: \(\left(\dfrac{a_1}{1}+\dfrac{a_2}{2}+\dfrac{a_3}{3}+..................+\dfrac{a_{2018}}{2018}\right)^2< 2018\)
Cho dãy số thực: \(a_1,a_2,a_3,............a_{2018}\) thỏa mãn: \(a^1_1+a^2_2+a^3_3+...............+a^{2018}_{2018}=1009\). CM: \(\left(\dfrac{a_1}{1}+\dfrac{a_2}{2}+\dfrac{a_3}{3}+.........+\dfrac{a_{2018}}{2018}\right)^2< 2018\)
Cho dãy số thực: \(a_1,a_2,a_3,............a_{2018}\) thỏa mãn: \(a^1_1+a^2_2+a^3_3+...............+a^{2018}_{2018}=1009\). CM: \(\left(\dfrac{a_1}{1}+\dfrac{a_2}{2}+\dfrac{a_3}{3}+.........+\dfrac{a_{2018}}{2018}\right)^2< 2018\)
Cho dãy số thực: \(a_1,a_2,a_3,.............,a_{2018}\) thỏa mãn: \(a^1_1+a^2_2+a^3_3+.................+a_{2018}^{2018}=1009\). Chứng minh: \(\left(\dfrac{a_1}{1}+\dfrac{a_2}{2}+\dfrac{a_3}{3}+.............+\dfrac{a_{2018}}{2018}\right)^2< 2018\)
Đề: Cho ba số x;y;z thỏa mãn (x-1)/2014 = (y-1)/2016 = (z-1)/2018
Tính giá trị biểu thức N = 4(x-y) (y-z) - (z-x)2.
Cho dãy số xác định bởi u1=1 , u n+1 = \(2un+\frac{n-1}{n^2+3n+2}\). khi đó u 2018 bằng