Cho hàm số y=f(x) có đạo hàm liên tục trên đoạn 0 ; 1 và f ( 0 ) + f ( 1 ) = 0 Biết ∫ 0 1 f 2 ( x ) d x = 1 2 , ∫ 0 1 f ' ( x ) c o s πxdx = π 2 Tính ∫ 0 1 f ( x ) d x
A. 2 / π
B. 3 π / 2
C. π
D. 1 / π
Cho các mệnh đề :
1) Hàm số y=f(x) có đạo hàm tại điểm x 0 thì nó liến tục tại x 0 .
2) Hàm số y=f(x) liên tục tại x 0 thì nó có đạo hàm tại điểm x 0 .
3) Hàm số y=f(x) liên tục trên đoạn [a;b] và f(a).f(b)<0 thì phương trình f(x) có ít nhất một nghiệm trên khoảng (a;b).
4) Hàm số y=f(x) xác định trên đoạn [a;b] thì luôn tồn tại giá trị lớn nhất và giá trị nhỏ nhất trên đoạn đó.
Số mệnh đề đúng là:
A. 2
B. 4
C. 3
D. 1
Cho hàm số y=f(x) có đạo hàm liên tục trên đoạn [-2;1] thỏa mãn f(0)=1 và f x 2 . f ' x = 3 x 2 + 4 x + 2 Giá trị lớn nhất của hàm số y=f(x) trên đoạn [-2;1] là
A. 2 16 3
B. 18 3
C. 16 3
D. 2 18 3
Ta có
Ta có: f ( 0 ) = 1 ⇒ 1 = 3 C
Xét hàm trên [-2;1]
Ta có
Nhận thấy f ' ( x ) > 0 ∀ x ∈ ℝ ⇒ Hàm số đồng biến trên (-2;1)
Suy ra m a x - 2 ; 1 f ( x ) = f ( 1 ) = 16 3
Chọn đáp án C.
Cho hàm số y = f(x) có đạo hàm liên tục trên đoạn [0;1] và f(0)+f(1)=0. Biết ∫ 0 1 f 2 x d x = 1 2 , ∫ 0 1 f ' x c os π d x = π 2 . Tính ∫ 0 1 f x d x
A. 3 π 2
B. 2 π
C. π
D. 1 π
Cho hàm số y = f(x) có đạo hàm liên tục trên R, đồ thị của hàm số y = f′(x) như hình vẽ bên. Số nghiệm thực phân biệt của phương trình f(x) = f(0) trên đoạn [−3;6] là
A. 4
B. 3.
C. 5.
D. 2.
Cho hàm số y=f(x) có đạo hàm liên tục trên R. Hàm số y= f'(x) có đồ thị như hình vẽ bên dưới:
Số nghiệm thuộc đoạn [-2;6] của phương trình f(x) = f(0) là
A. 5
B. 2
C. 3
D. 4
Cho hàm số y=f(x) có đạo hàm liên tục trên đoạn [0;1] và thỏa mãn f(0)=0. Biết ∫ 0 1 f 2 x d x = 9 2 và ∫ 0 1 f ' x cos πx 2 d x = 3 π 4 . Tích phân bằng:
A. 1 π
B. 4 π
C. 6 π
D. 2 π
Cho hàm số y = f ( x ) có đạo hàm liên tục trên đoạn [0;1] và f(0)+f(1) = 0. Biết ∫ 0 1 f 2 ( x ) d x = 1 2 ∫ 0 1 f ' ( x ) cosπ d x = π 2 Tính ∫ 0 1 f ( x ) d x
Cho hàm số y = f(x) có đạo hàm f’(x) liên tục trên đoạn [0; 1] thỏa mãn f(1) = 1 và I = ∫ 0 1 f x d x = 2 . Tính tích phân I = ∫ 0 1 f ' x d x
A. I = -1.
B. I = 1.
C. I = 2.
D. I = -2.
Chọn D.
Xét I = ∫ 0 1 f ' x d x Đặt t = x → t 2 = x → 2 t d t = d x
Đổi cận x = 0 → t = 0 x = 1 → t = 1 . Khi đó I = 2 ∫ 0 1 t f ' ( t ) d t = 2 A
Tính A = ∫ 0 1 t f ' ( t ) d t . Đặt u = t d v = f ' t d t → d u = d t v = f t
Khi đó
Cho hàm số y = f(x)có đạo hàm liên tục trên đoạn [0;1] và thỏa mãn f(0) = 0. Biết ∫ 0 1 f 2 ( x ) d x = 9 2 và y = ∫ 0 1 f ' ( x ) cos πx 2 d x = 3 π 4 . Tích phân ∫ 0 1 f ( x ) d x bằng:
A. 1 π
B. 4 π
C. 6 π
D. 2 π