cho m =4+4^2+4^3+4^4+....+ 4^100 chứng tỏ rằng m chia hết cho 20
Cho tổng M = 1 + 4 + 4^2 + 4^3+...+4^100 .
Chứng tỏ rằng M ko chia hết cho 5.
Giải :
M = 1 + 4 + 4^2 + 4^3 +...+ 4^100
= 1 + ( 4+4^2) + ( 4^3+4 ^4) +... + ( 4^99+4^100)
= 1+4 . (1+4) + 4^3 . ( 1+4) +...+4^99 . (1+4)
=1+4.5 + 4^3.5+... + 4^99.5
= 1 +5. ( 4 + 4^3+...+4^99)
Vì 5. ( 4+ 4^3 +...+ 4^99) chia hết cho 5.
Mà 1 không chia hết cho 5.
=> M không chia hết cho 5.
Cảm ơn ! Quên chưa cảm ơn trước :>
Cho biểu thức M =(1+1/2+1/3+1/4+...+1/100)×2×3×4×5×…×100
Chứng tỏ rằng M chia hết cho 101
Www duoccvvvv làm gì để giảm cân nhanh và an toàn cho người ta có thể học được cách điệu với áo dài đau đớn đau đầu sốt ói mửa và tiêu thụ sản phẩm của mình và người
2.Chứng tỏ rằng M=\(75.\left(4^{2021}+4^{2020}+...4^2+4+1\right)\)+25 chia hết cho 100
Lời giải:
Xét $A=4^{2021}+4^{2020}+...+4^2+4+1$
$4A=4^{2022}+4^{2021}+...+4^3+4^2+4$
$\Rightarrow 4A-A=4^{2022}-1$
$\Rightarrow 3A=4^{2022}-1$
$\Rightarrow M=75A+25=25(4^{2022}-1)+25=25.4^{2022}=100.4^{2021}\vdots 100$
Ta có đpcm.
Bài 1: Cho A=4+41+43+...4100
a) Tính A
b) Chứng tỏ rằng A chia hết cho 5; A chia hết cho 20; A chia hết cho 21
Bài 2: Cho B= 7+72+73+...7400
a) Tính B
b) Chứng tỏ rằng B chia hết cho 8; B chia hết cho 56; B chia hết cho 57
cho A = 4 + 4^2 + 4^3 + 4^4 + .........4^99 +4^100 chứng tỏ rằng A chia hết cho 5
Cho A= 4 + 42 + .......+ 4100
a) Tính A
b) Chứng tỏ rằng :
A chia hết cho 5; chia hết cho 20.
A chia hết cho 5:
A= 4 + 42 + .......+ 4100
A=(4+42)+(43+44)+....+(499+4100)
A=4(1+4)+43(1+4)+....+499(1+4)
A=4.5+43.5+....+499.5
A=5(4+43+....+499)
=>A chia hết cho 5.
A chia hết cho 20:
A=(4+42)+(43+44)+(45+46)+....+(499+4100)
A=20+42(4+42)+44(4+42)+....+498(4+42)
A=20+42.20+44.20+....+498.20
A=20(1+42+44+....+498)
=>A chia hết cho 20.
2. Chứng tỏ rằng M=75.(42021+42020+....+42+4+1)+ 25 chia hết cho 100
\(M=75.4\left(4^{2020}+4^{2019}+...+4+1\right)+75+25=\)
\(=300.\left(4^{2020}+4^{2019}+...+4+1\right)+100=\)
\(=100\left[3.\left(4^{2020}+4^{2019}+...+4+1\right)+1\right]⋮100\)
a,Tính S=4+7+10+13+......2014
b,Chứng minh rằng n.(n+2013)chia hết cho 2 với mọi số tự nhiên n
c,Cho M=2+2^2+2^3+.....2^20.Chứng tỏ rằng M chia cho 15
\(a,S=\dfrac{\left(2014+4\right)\left[\left(2014-4\right):3+1\right]}{2}=\dfrac{2018\cdot671}{2}=677039\\ b,\forall n\text{ lẻ }\Rightarrow n+2013\text{ chẵn }\Rightarrow n\left(n+2013\right)⋮2\left(1\right)\\ \forall n\text{ chẵn }\Rightarrow n\left(n+2013\right)⋮2\left(2\right)\\ \left(1\right)\left(2\right)\RightarrowĐpcm\\ c,M=\left(2+2^2+2^3+2^4\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{10}\right)\\ M=2\left(1+2+2^2+2^3\right)+...+2^{16}\left(1+2+2^2+2^3\right)\\ M=\left(1+2+2^2+2^3\right)\left(2+...+2^{16}\right)=15\left(2+...+2^{16}\right)⋮15\)
Cho M 2+22+23+24+ .......+220. Chứng tỏ rằng M chia hết cho 10
M=2+22+23+24+...+220
M=(2+22+23+24)+...+(217+218+219+220)
M=1.(2+22+23+24)+...+216.(2+22+23+24)
M=1.30+...+216.30
M=30.(1+...+216)
Vì 30 chia hết cho 10
=> 30.(1+...+216) chia hết cho 10 hay M chia hết cho 10
Vậy M = 2+22+23+24+...+220 chia hết cho 10.
_HT_
M = 2 + 2^2 + 2^3 + ... + 2^20
M . 2 = 2^2 + 2^3 + 2^4 + ... + 2^21
M . 2 - M = (2^2 + 2^3 + 2^4 + ... + 2^21) - (2 + 2^2 + 2^3 + ... + 2^20)
M = 2^21 - 2
M = 2^20 . 2 - 2
M = (2^4)^5 . 2 - 2
M = 16^5 . 2 -2
M = ...6 . 2 - 2 (... 6 khi viết vào bài bạn nhớ thêm dấu gạch ngang trên đầu nhé!)
M = ...2 - 2 (Ở đây cũng thêm dấu gạch ngang trên đầu số ...12 nhé!)
M = ...0 (Thêm dấu gạch ngang trên đầu)
=> M chia hết cho 10
=> ĐPCM
ta thấy 2+2 mũ 2(mik ko gõ đc số mũ)+2 mũ 3 +2 mũ 4 =2+4+8+16=30 mà 30 chia hết cho 10
vậy có tất cả 5 cặp chia hết cho 10 nên M chia hết cho 10