Cho biểu thức Q = a a 2 - b 2 - 1 + a a 2 - b 2 : b a - a 2 - b 2 v ớ i a > b > 0
Rút gọn Q
Bài 1: Cho biểu thức A= \(\dfrac{3}{2x+6}\) - \(\dfrac{x-6}{2x^2+6x}\)
a) Rút gọn biểu thức A
b) Tính giá trị của biểu thức A tại x=\(\dfrac{1}{2}\)
Bài 2: Cho biểu thức A= \(\dfrac{5x+2}{3x^2+2x}\) + \(\dfrac{-2}{3x+2}\) với x ≠ 0 và x ≠ \(\dfrac{-2}{3}\)
a) Rút gọn biểu thức A
b) Tính giá trị biểu thức A tại x=\(\dfrac{1}{3}\).
1/ a, \(A=\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)
\(=\dfrac{3}{2\left(x+3\right)}-\dfrac{x-6}{2x\left(x+3\right)}\)
\(=\dfrac{3x-x+6}{2x\left(x+3\right)}\)
\(=\dfrac{2x+6}{2x\left(x+3\right)}\)
\(=\dfrac{2\left(x+3\right)}{2x\left(x+3\right)}\)
\(=\dfrac{1}{x}\)
Vậy \(A=x\)
b/ Khi \(x=\dfrac{1}{2}\Leftrightarrow A=\dfrac{1}{\dfrac{1}{2}}=2\)
Vậy...
2/a,
\(A=\dfrac{5x+2}{3x^2+2x}+\dfrac{-2}{3x+2}\)
\(=\dfrac{5x+2}{x\left(3x+2\right)}-\dfrac{2x}{x\left(3x+2\right)}\)
\(=\dfrac{5x+2-2x}{x\left(3x+2\right)}\)
\(=\dfrac{3x+2}{x\left(3x+2\right)}\)
\(=\dfrac{1}{x}\)
Vậy....
b/ Với \(x=\dfrac{1}{3}\Leftrightarrow A=\dfrac{1}{\dfrac{1}{3}}=3\)
Vậy..
Câu 18:
(2) Cho biểu thức : Q=
a. Rút gọn biểu thức Q. b. Tìm x để Q=
.
1,cho các số thực a,b,c ko âm thỏa mãn : a+b+c=3. Tìm GTLN của biểu thức : Q= (a^2-ab+b^2)(b^2-bc+c^2)(c^2-ca+a^2)
2,cho số thực \(a\ge4\).Tìm GTNN của biểu thức S= \(a+\frac{1}{a}\)
2) \(S=a+\frac{1}{a}=\frac{15a}{16}+\left(\frac{a}{16}+\frac{1}{a}\right)\)
Áp dụng BĐT AM-GM ta có:
\(S\ge\frac{15a}{16}+2.\sqrt{\frac{a}{16}.\frac{1}{a}}=\frac{15.4}{16}+2.\sqrt{\frac{1}{16}}=\frac{15}{4}+2.\frac{1}{4}=\frac{15}{4}+\frac{1}{2}=\frac{15}{4}+\frac{2}{4}=\frac{17}{4}\)
\(S=\frac{17}{4}\Leftrightarrow a=4\)
Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)
kudo shinichi sao cách làm giống của thầy Hồng Trí Quang vậy bạn?
\(S=a+\frac{1}{a}=\frac{15}{16}a+\left(\frac{a}{16}+\frac{1}{a}\right)\ge\frac{15}{16}a+2\sqrt{\frac{1.a}{16.a}}=\frac{15}{16}a+2.\frac{1}{4}\)
\(=\frac{15}{16}.4+\frac{1}{2}=\frac{17}{4}\Leftrightarrow a=4\)
Dấu "=" xảy ra khi a = 4
Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)
Cho 2 biểu thức:
\(A=1+x+x^2+x^3+..............+x^{2012}\)
\(B=1-x+x^2-x^3+...............-x^{2011}\)
a) Tính giá trị của biểu thức A tại \(x=-1\)
b) Tìm biểu thức C sao cho A=C+B
cho a+b+của biểu thức=o(a khác o, b khác o c khác 0)tính giá trị của biểu thức a=\(\frac{a^2}{a^2-b^2-c^2}\)+\(\frac{b^2}{b^2-c^2-a^2}\)+\(\frac{c^2}{c^2-a^2-b^2}\)
Cho biểu thức \(B=a^3b^2-a^2b^3\) Tìm điều kiện của a,b sao cho biểu thức B ko âm
điều kiện là
a>b
a) Cho biểu thức P=\(\frac{a}{a^2-a+1}\)
Tìm a là số tự nhiên để biểu thức P có giá trị là số nguyên.
b)Cho x<4.Tìm giá trị nhỏ nhất của biểu thức A=\(^{x^2\left(2-x\right)}\)
GIÚP MÌNH VỚI Ạ ! MAI MÌNH CẦN GẤP RỒI!
Bài 1 : Cho biểu thức A = \(\frac{x}{x+2}\) + \(\frac{4-2x}{x^2-4}\)
a ) Tìm điều kiện của x để biểu thức A có nghĩa
b ) Rút gọn biểu thứ A
c ) Tìm giá trị của x khi A = 0
Bài 2 : cho biểu thức B = \(\frac{x}{x+3}\)+ \(\frac{9-3x}{x^2-9}\)
a ) Tìm điều kiện của x để biểu thức B có nghĩa
b ) Rút gọn biểu thứ B
c ) Tìm giá trị của x khi B = 0
Bài 3 : Cho phân thức : A =\(\frac{x^2+2x+1}{x^2-x-2}\)
a ) Tìm x để biểu thức A xác định
b ) Rút gọn biểu thức A
c ) Tính giá trị của biểu thức A khi x = 0 , 1 , 2012
d ) Tìm các giá trị nguyên của x để A nhận giá trị nguyên
Bài 4 : Cho biểu thức : A =\(\frac{1}{x+1}\)+ \(\frac{1}{x-1}\)- \(\frac{2}{x^2-1}\)
a ) tìm điều kiện của x để biểu thức A có nghĩa
b ) Rút gọn biểu thức A
C ) Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên
CÁC BẠN GIẢI ĐƯỢC BÀI NÀO THÌ GIẢI GIÚP MÌNH VỚI NHÉ KHÔNG NHẤT THIẾT PHẢI GIẢI HẾT ĐÂU ! BÂY GIỜ MÌNH ĐANG RẤT CẦN CÁC BẠN CỐ GẮNG NHÉ !
Dài quá trôi hết đề khỏi màn hình: nhìn thấy câu nào giải cấu ấy
Bài 4:
\(A=\frac{\left(x-1\right)+\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{2}{\left(x+1\right)\left(x-1\right)}=\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)
a) DK x khác +-1
b) \(dk\left(a\right)\Rightarrow A=\frac{2}{\left(x+1\right)}\)
c) x+1 phải thuộc Ước của 2=> x=(-3,-2,0))
1. a) Biểu thức a có nghĩa \(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x^2-4\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x-2\ne0\\x+2\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}\)
Vậy vs \(x\ne2,x\ne-2\) thì bt a có nghĩa
b) \(A=\frac{x}{x+2}+\frac{4-2x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{4-2x}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2-2x+4-2x}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2-4x+4}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x-2}{x+2}\)
c) \(A=0\Leftrightarrow\frac{x-2}{x+2}=0\)
\(\Leftrightarrow x-2=\left(x+2\right).0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)(ko thỏa mãn điều kiện )
=> ko có gía trị nào của x để A=0
Bài 1:
a) \(x+2\ne0\Leftrightarrow x\ne-2\)
\(x^2-4\ne0\Leftrightarrow x\ne+_-2\)
b) \(A=\frac{x}{x+2}+\frac{4-2x}{x^2-4}=\frac{x-2}{x+2}\)
c) \(A=0\Leftrightarrow\frac{x-2}{x+2}=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Mà đk: x khác 2
Vậy ko tồn tại giá trị nào của x để A=0
bài 1: Cho biểu thức \(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\)
a, rút gọn biểu thức A
b, tìm a để A=1
bài 2 : cho biểu thức \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)
a, tìm điều kiện của x để B có nghĩa
b, rút gọn
c, tính giá trị biểu thức B tại x =\(3+2\sqrt{3}\)
bài 3 cho biểu thức \(B=\left(\frac{1}{\sqrt{y}+1}-\frac{3\sqrt{y}}{\sqrt{y}-1}+3\right).\frac{\sqrt{y}+1}{\sqrt{y}+2}\)
a, tìm y để B có nghĩa và rút gọn B
b, tính giá trị của biểu thức B biết y = \(3+2\sqrt{2}\)
GIÚP MÌNH VỚI TỐI MAI ĐI HC RỒI
1,
\(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\left(đk:a\ne0;1;2;a\ge0\right)\)
\(=\frac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a\sqrt{a}+1\right)\left(a-\sqrt{a}\right)}{a^2-a}.\frac{a-2}{a+2}\)
\(=\frac{a^2\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}-a^2+a-\sqrt{a}\right)}{a\left(a-1\right)}.\frac{a-2}{a+2}\)
\(=\frac{2a\left(a-1\right)\left(a-2\right)}{a\left(a-1\right)\left(a+2\right)}=\frac{2\left(a-2\right)}{a+2}\)
Để \(A=1\)\(=>\frac{2a-4}{a+2}=1< =>2a-4-a-2=0< =>a=6\)
2,
a, Điều kiện xác định của phương trình là \(x\ne4;x\ge0\)
b, Ta có : \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)
\(=\frac{2\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{x-4}-\frac{\sqrt{x}-2}{x-4}\)
\(=\frac{2\sqrt{x}+2+2}{x-4}=\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{2}{\sqrt{x}-2}\)
c, Với \(x=3+2\sqrt{3}\)thì \(B=\frac{2}{3-2+2\sqrt{3}}=\frac{2}{1+2\sqrt{3}}\)
Cho 2 biểu thức:
\(A=1+x+x^2+x^3+.................+x^{2012}\)
\(B=1-x+x^2-x^3+..............-x^{2011}\)
a) Tính giá trị của biểu thức A tại x=-1
b) Tìm biểu thức C sao cho A=C+B
a) Ta có :
A = ( 1 + x2 + x4 + ... + x2012 ) + ( x + x3 + x5 + ... + x2011 )
⇔ A = ( 1 + 1 + 1 + ... + 1 ) + ( - 1 - 1 - 1 - ... - 1 )
⇔ A = 1007 - 1006 = 1
b) Ta có :
A = C + B ⇒ C = A - B
C = ( 1 + x + x2 + x3 + ... + x2012 ) - ( 1 - x + x2 - x3 + ... -x2011 )
= 1+ x + x2 + ... + x2012 - 1 + x - x2 + ... + x2011
= 2 ( x + x3 + x5 + x2011 ) + x2012