Cho x O A ^ và y O A ^ là hai góc kề bù. Tia Oz, Ot lần lượt là hai tia phân giác của x O A ^ ; y O A ^ . Tính z O t ^
A. 80 °
B. 90 °
C. 100 °
D. 110 °
HÌNH HỌC:vẽ hình theo cách diễn đạt sau:
cho đường thẳng x y và điểm O trên x y. lấy 2 điểm a và b sao cho O nằm giữa 2 điểm a và b.trên đường thẳng x y lây1 điểm C khác điểm O. vẽ đường thẳng đi qua 2 điểm A,C và đường thẳng đi qua 2 diểm B,C
Cho hai góc nhọn xOy và x'O'y' có các cạnh tương ứng Ox // O'x' , Oy // O'y'. Vẽ các tia Oz và O'z' lần lượt là phân giác của góc xOy và x'O'y'. Chứng tỏ :
a) Hai góc xOy và x'O'y' bằng nhau.
b) Oz // O'z'.
a,Kéo dài OY cắt O'X' tại A ta có:
\(\widehat{XOY}\) = \(\widehat{XOA}\) = \(\widehat{OAO'}\) (so le trong) (1)
\(\widehat{Y'O'X'}\) = \(\widehat{Y'O'A}\) = \(\widehat{OAO'}\) (so le trong) (2)
Kết hợp (1) Và (2) ta có:
\(\widehat{XOY=}\) \(\widehat{X'O'Y'}\) (đpcm)
b, Kéo dài OY cắt O'Z' tại H
\(\widehat{ZOA}\) = \(\dfrac{1}{2}\) \(\widehat{XOY}\) (vì OZ là phân giác của góc XOY
\(\widehat{HO'A}\) = \(\dfrac{1}{2}\) \(\widehat{X'O'Y'}\) (vì OY là phân giác của góc X'O'Y')
Mặt khác ta có \(\widehat{OAO'}\) = \(\widehat{HO'A}\) + \(\widehat{AHO'}\) (góc ngoài tam giác bằng tổng hai góc trong không kề với nó)
\(\widehat{HO'A}\) = \(\dfrac{1}{2}\) \(\widehat{OAO'}\) ⇒ \(\widehat{AHO'}\) = \(\dfrac{1}{2}\) \(\widehat{OAO'}\) = \(\dfrac{1}{2}\) \(\widehat{XOY}\)
⇒ \(\widehat{ZOA}\) = \(\widehat{AHO'}\) (hai góc này ở vị trí so le trong)
⇒ OZ // O'Z' (đpcm)
Cho x O y ^ = 120 ° . Lấy điêm A trên tia Ox. Trên cùng nửa mặt phẳng bờ Ox chứa tia Oy vẽ tia At sao cho O A t ^ = 60 ° .
a) Chứng minh At // Oy.
b) Gọi On, Om lần lượt là 2 tia phân giác của x O y ^ và x A t ^. Chứng minh On // Am Giúp mk với
Cho $\widehat{x O y}=90^{\circ}$, vẽ hai tia $O A,$ $O B$ ở trong góc đó sao cho $\widehat{x O A}=\widehat{y O B}=60^{\circ}$. Trên nửa mặt phẳng bờ $O x$ chứa tia $O y$, vẽ tia $O M$ sao cho $O y$ là tia phân giác của $\widehat{M O B}$.
a) Chứng minh tia $O A$ là tia phân giác $\widehat{y O B}$, tia $O B$ là tia phân giác $\widehat{x O A}$.
b) Chứng minh $O M \perp O A$.
cửa hàng bán được một tạ rưỡi gẹo tẻ và gạo nếp ; trong đó 25% là gạo nếp. hỏi của hàng bán mỗi loại bao nhiêu ki-lô-gam gạo
a)xOy=xOA+AOy(vì là 2 góc kề bù)
90=60+AOy
AOy=90-60
AOy=30
=> OA là tia phân giác của yOB
xOy=yOB+BOA(vì là 2 góc kề bù)
90=60+BOA
BOA=90-60
BOA=30
=>OB là tia phân giác của xOA(vì tia phân giác bằng 60:2=30)
b)
Cho góc $\widehat{x O y}=140^{\circ}$. Ở ngoài của góc, vẽ hai tia $O A$ và $O B$ sao cho $O A \perp O x,$ $O B \perp O y$. Gọi $O M$ là tia phân giác của $\overline{x O y}$ và $O M'$ là tia đối của tia $OM$.
a) Chứng minh $O M'$ là tia phân giác của $\widehat{A O B}$.
b) Tính số đo góc $\widehat{xOB}$.
a) Ta có: \(\widehat{xOy}=140^0\)
\(\widehat{xOA}=\widehat{yOB}=90^0\) ( do \(OA\perp Ox,OB\perp Oy\) )
\(\Rightarrow\widehat{AOB}=360-\left(\widehat{xOy}+\widehat{xOA}+\widehat{yOB}\right)\)
\(\Leftrightarrow\widehat{AOB}=360^0-\left(140^0+90^0+90^0\right)\)
\(\Leftrightarrow\widehat{AOB}=40^0\)
\(OM\) là tia phân giác của \(\widehat{xOy}\)
\(\Rightarrow\widehat{xOM}=\widehat{MOy}=\dfrac{1}{2}\widehat{xOy}=\dfrac{1}{2}.140^0=70^0\)
\(OM'\) là tia đối của \(OM\Rightarrow\widehat{MOM'}=180^0\)
Mà \(OA\) nằm ngoài \(\widehat{xOy}\) và \(OA\perp Ox\) nên \(\widehat{MOM'}=\widehat{MOx}+\widehat{xOA}+\widehat{AOM'}\)
Do đó \(\widehat{AOM'}=\widehat{MOM'}-\left(\widehat{MOx}+\widehat{xOA}\right)\) \(\Rightarrow\widehat{AOM'}=180^0-\left(70^0+90^0\right)=20^0\) \(\left(1\right)\)
Mặt khác \(Oy\) nằm giữa \(OB\) và \(OM\) nên \(\widehat{MOB}=\widehat{MOy}+\widehat{yOB}=70^0+90^0=160^0\)
\(\Rightarrow\widehat{MOB}< \widehat{MOM'}\)
Do đó \(OB\) và \(Oy\) nằm cùng nửa mặt phẳng bờ \(MM'\)
\(Ox\) nằm giữa \(OA\) và \(OM\) nên\(\widehat{MOA}=\widehat{MOx}+\widehat{xOA}=70^0+90^0=160^0\)
\(\Rightarrow\widehat{MOA}< \widehat{MOM'}\)
Do đó tia \(OA\) và \(Ox\) nằm cùng nửa mặt phẳng bờ \(MM'\)
Nên \(OM'\) nằm giữa \(OA\) và \(OB\)
\(\Rightarrow\widehat{AOB}=\widehat{AOM'}+\widehat{M'OB}\Rightarrow\widehat{M'OB}=\widehat{AOB}-\widehat{AOM'}=40^0-20^0=20^0\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) ta có: \(\widehat{M'OB}=\widehat{AOM'}=20^0=\dfrac{1}{2}\widehat{AOB}\)
Suy ra \(OM'\) là tia phân giác của góc \(\widehat{AOB}\)
b) Ta có: \(\widehat{MOx}< \widehat{MOA}< \widehat{MOM'}\) nên \(OA\) nằm giữa \(Ox\) và \(OM'\)
Mà \(OM'\) là tia phân giác của góc \(\widehat{AOB}\)
Suy ra \(OA\) nằm giữa \(Ox\) và \(OB\)
Vậy \(\widehat{xOB}=\widehat{xOA}+\widehat{AOB}=90^0+40^0=130^0\)
a) Suy ra OM' là tia phân giác của góc AOB.
b) Vậy góc xOB = góc xOA + góc AOB = 90o + 40o = 130o.
Cho điểm O thuộc đường thẳng xy. Trên cùng một nửa mặt phẳng bờ là đường thẳng xy, vẽ các tia Om, On sao cho \(x\widehat{O}m=25^o\) và \(y\widehat{O}n=75^o\).
a) Tính số đo \(m\widehat{O}y\).
b) Trên cùng một nửa mặt phẳng bờ chứa Om, không chứa tia Ox, vẽ tia Oz sao cho \(m\widehat{O}z=40^o\). Chứng minh Oz là tia phân giác của \(m\widehat{O}n\).
c) Tam giác \(A\widehat{O}B\) có \(A\widehat{O}B=75^o\)và AO=OB=3 cm. Biết điểm A thuộc tia Oy, hãy nêu cách dựng △AOB.
1, cho đa thức A=x2-5xy+5y2-3x+18y và B=-x2+3xy-y2-x-7
a, tìm đa thức C sao cho A-C=B
b, Tính giá trị của đa thức C tìm được ở trên khi x-y=4
2, Tìm điểm Mo(xo,yo) thuộc đồ thị hàm số y=-2/3x biết 5yo+2|xo|=8
Mọi người giải giúp mình nha, mình đang cần gấp,thanks
Cho Δ ABC có góc C = 30o. Gọi số đo các góc A, B lần lượt là x, y. Tính x và y trong mỗi trường hợp sau:
a) x = 2y
b) x - y = 10o
c*) 3x = 2y
Giải:
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow\widehat{A}+\widehat{B}+30^o=180^o\)
\(\Rightarrow\widehat{A}+\widehat{B}=150^o\)
a) Ta có: \(\widehat{A}+\widehat{B}=150^o\)
\(\Rightarrow x+y=150^o\)
Mà x = 2y
\(\Rightarrow2y+y=150^o\)
\(\Rightarrow3y=150^o\)
\(\Rightarrow y=50^o\)
\(\Rightarrow x=50^o.2=100^o\)
Vậy \(y=50^o,x=100^o\)
b) Ta có: \(\widehat{A}+\widehat{B}=150^o\)
\(\Rightarrow x+y=150^o\)
Mà \(x-y=10^o\)
\(\Rightarrow x=\left(150^o+10^o\right):2=80^o\)
\(\Rightarrow y=150^o-80^o=70^o\)
Vậy \(x=80^o,y=70^o\)
c) Ta có: \(3x=2y\Rightarrow\frac{x}{3}=\frac{y}{2}\) và \(\widehat{A}+\widehat{B}=150^o\) hay \(x+y=150^o\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{2}=\frac{x+y}{3+2}=\frac{150^o}{5}=30^o\)
+) \(\frac{x}{3}=30^o\Rightarrow x=90^o\)
+) \(\frac{y}{2}=30^o\Rightarrow y=60^o\)
Vậy \(x=90^o,y=60^o\)
Cho d : x - 5 2 = y + 1 - 2 = z - 7 1 , A 4 ; - 3 ; 2 , O 0 ; 0 ; 0 . Gọi A', O' lần lượt là hình chiếu vuông góc của A và O xuống (d). Tính độ dài A'O'.
Cho $\widehat{xOy}$. Lấy các điểm $A, \, B$ thuộc tia $O x$ sao cho $O A>O B$. Lấy các điểm $C, \, D$ thuộc $O y$ sao cho $O C=O A, \, O D=O B$. Gọi $E$ là giao điểm của $A D$ và $B C$. Chứng minh rằng
a) $A D=B C$.
b) $\triangle A B E=\triangle C D E$.
c) $O E$ là tia phân giác của $\widehat{x O y}$.
a)
Xét \(\Delta AOD\) và \(\Delta COB\) có: \(\left\{{}\begin{matrix}OA=OC\left(gt\right)\\\widehat{O}:chung\\OB=OD\left(gt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta AOD=\Delta COB\left(c.g.c\right)\)
\(\Rightarrow AD=BC\left(\text{2 cạnh tương ứng}\right)\left(\text{đpcm}\right)\)
b)
Nối A với C
Ta có: \(\left\{{}\begin{matrix}OA=OC\\OB=OD\end{matrix}\right.\left(gt\right)\Rightarrow OA-OB=OC-OD\)
Hay \(AB=CD\)
Xét \(\Delta ABC\) và \(\Delta CDA\) có: \(\left\{{}\begin{matrix}AB=CD\left(cmt\right)\\AC:chung\\AD=BC\left(cmt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta ABC=\Delta DCA\left(c.c.c\right)\)
\(\Rightarrow\widehat{ABC}=\widehat{CDA}\left(\text{2 góc tương ứng}\right)\)
Vì \(\Delta AOD=\Delta COB\left(cmt\right)\Rightarrow\widehat{A}=\widehat{C}\left(\text{2 góc tương ứng}\right)\)
Xét \(\Delta ABE\) và \(\Delta CDE\) có: \(\left\{{}\begin{matrix}\widehat{ABC}=\widehat{CDA}\left(cmt\right)\\AB=CD\left(cmt\right)\\\widehat{A}=\widehat{C}\left(cmt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta ABE=\Delta CDE\left(g.c.g\right)\left(\text{đpcm}\right)\)
c) Vì \(\Delta ABE=\Delta CDE\left(cmt\right)\Rightarrow AE=CE\left(\text{2 cạnh tương ứng}\right)\)
Xét \(\Delta AOE\) và \(\Delta COE\) có: \(\left\{{}\begin{matrix}OA=OC\left(gt\right)\\\widehat{A}=\widehat{C}\left(cmt\right)\\AE=CE\left(cmt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta AOE=\Delta COE\left(c.g.c\right)\\ \Rightarrow\widehat{AOE}=\widehat{COE}\left(\text{2 góc tương ứng}\right)\)
`=> OE` là phân giác của \(\widehat{xOy}\) (đpcm)
a) Xét và , có
(giả thiết);
chung;
(giả thiết).
Do đó (c.g.c)
(hai cạnh tương ứng).
b) Do và nên .
Mà (chứng minh trên)
; (hai góc tương ứng)
Mặt khác
Xét và có
(chứng minh trên);
(chứng minh trên);
(chứng minh trên)
Do đó (g.c.g).
c) Vi (chứng minh trên) nên (hai cạnh tương ứng).
Xét và có (chứng minh trên);
cạnh chung;
(giả thiết).
Do đó (c.c.c)
COE
(hai góc tương ứng)
là tia phân giác của .
a) Xét và , có
(giả thiết);
chung;
(giả thiết).
Do đó (c.g.c)
(hai cạnh tương ứng).
b) Do và nên .
Mà (chứng minh trên)
; (hai góc tương ứng)
Mặt khác
Xét và có
(chứng minh trên);
(chứng minh trên);
(chứng minh trên)
Do đó (g.c.g).
c) Vi (chứng minh trên) nên (hai cạnh tương ứng).
Xét và có (chứng minh trên);
cạnh chung;
(giả thiết).
Do đó (c.c.c)
(hai góc tương ứng)
là tia phân giác của .