Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phương Anh Bùi
Xem chi tiết
Trí Hải ( WITH THE NICKN...
Xem chi tiết

a) M = \(5+5^2+5^3+...+5^{80}\)

\(\Leftrightarrow M=5.\left(1+5\right)+5^3\left(1+5\right)+...+5^{79}\left(1+5\right)\)

\(\Leftrightarrow M=5.6+5^3.6+...+5^{79}.6\)

\(\Leftrightarrow M=6.\left(5+5^3+...+5^{79}\right)⋮6\)

=> M chi hết cho 6 => điều phải chứng minh

trầnthuhoai
24 tháng 1 2021 lúc 12:18

) M = (5+5^2) + (5^3+5^4) + … + (5^79+5^80)

M = 5(1+5) + 5^3(1+5) + … + 5^79(1+5)

M= 5.6 + 5^3.6 + … + 5^79.6

M = 6(5+5^3+…+5^79) chia hết cho 6

b)  Ta thấy : M = 5 + 52+ 53+ ... + 580 cchia hết cho số nguyên tố 5

Mặt khác, do: 52 + 53 + ... 580 chia hết cho 52 (vì tất cả các số hạng đều chia hết cho 52)

=> M = 5 + 52 + 53 + ... + 580  không chia hết cho 52 (do 5 không chia hết cho 52)

=> M chia hết cho 5 nhưng không chia hết cho 52

=> M không phải số chính phương

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 11 2017 lúc 16:51

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 9 2017 lúc 17:40

a,  3 2 + 4 2 = 25 = 5 2  là số chính phương.

b,  13 2 - 5 2 = 144 = 12 2 là số chính phương.

c,  1 3 + 2 3 + 3 3 + 4 3 = 100 = 10 2  là số chính phương.

Nguyễn Ngọc Quỳnh Phương
Xem chi tiết
Cô Hoàng Huyền
27 tháng 7 2018 lúc 11:36

a) Số số hàng trong tổng A là:

     \(\frac{\left(2n+1-1\right)}{2}+1=n+1\)

\(A=\frac{\left(2n+1+1\right)\left(n+1\right)}{2}=\left(n+1\right)\left(n+1\right)=\left(n+1\right)^2\)

Do n là số tự nhiên nên A là số chính phương.

b) Số số hạng trong tổng B là:

    \(\frac{2n-2}{2}+1=n\)

\(B=\frac{\left(2n+2\right).n}{2}=\left(n+1\right)n\)

Vậy số B không thể là số chính phương.

Nguyễn Thị Vương Bích
Xem chi tiết
Bùi Thị Quỳnh Giang
Xem chi tiết
Đào Trọng Luân
16 tháng 5 2017 lúc 18:55

a.

A = 5 + 5^2 + 5^3 +...+5^100

5A = 5^2 + 5^3 +...+5^101

4A = [5^2 + 5^3+...+5^101] - [5 + 5^2 +5^3+...+5^100]

A = \(\frac{5^{101}-5}{4}\)

b, Vì 5, 5^2,..., 5^100 đều là lũy thừa của 5 nên sẽ bằng 5[5n] chia hết cho 5

=> A là hợp số

c, 

A = 5 + 5^2 + 5^3 +... + 5^100

A = [5 + 5^2] + [5^3 + 5^4] + ... + [5^99 + 5^100]

A = 30 + 5^2[5 + 5^2] + ... + 5^98[5 + 5^2]

A = 30 + 5^2.30 + ... + 5^98 . 30 

=> A chia hết cho 30

d.

Vì A = \(\frac{5^{101}-5}{4}\)[cm trên]

Mà theo quy tắc thì 5101 có chữ số tận cùng là 25 [vì 5n = ...25 với mọi n E N*]

=> 5101-5 = ...20 [chỉ có thể là số có chữ số tận cùng là 0 bình phương lên]

Mà một số có chữ số tận cùng là 0 khi bình phương lên sẽ có ít nhất 2 chữ số 0 ở tận cùng

Mà A chỉ có 4 chữ số 0

=> A không phải số chính phương

Ủng hộ mik nếu thấy OK   Nha mấy bạn >..<

nguyễn ngọc thiên  thanh
Xem chi tiết
Jen Jeun
19 tháng 6 2015 lúc 12:52

a) A có số số hạng là: (2n+1-1) :2 +1 = n+1 (số)

=> \(A=\frac{\left(2n+1+1\right).\left(n+1\right)}{2}=\frac{\left(2n+2\right).\left(n+1\right)}{2}=\frac{2\left(n+1\right)\left(n+1\right)}{2}\)

                                                                           \(=\left(n+1\right).\left(n+1\right)=\left(n+1\right)^2\)

=> A là số chính phương

b) B có số số hạng là : (2n-2):2+1= n (số)

=> \(B=\frac{\left(2n+2\right).n}{2}=\frac{2\left(n+1\right).n}{2}=\left(n+1\right).n\)

=> B không là số chính phương.

Huỳnh Thị Minh Huyền
3 tháng 12 2015 lúc 16:44

A có số số hạng là:

(2n+1-1):2+1=n+1(số)

=>\(\frac{\left(2n+1+1\right).\left(n+1\right)}{2}=\frac{\left(2n+2\right).\left(n+1\right)}{2}=\frac{2\left(n+1\right)\left(n+1\right)}{2}\)

                                                       \(=\left(n+1\right).\left(n+1\right)=\left(n+1\right)^2\)  

=>A là số chính phương

Nguyên Hà Huy
Xem chi tiết