Rút gọn D = x + y 1 - xy - x - y 1 + xy : y + xy 1 - xy với x ≥ 0; y ≥ 0; xy ≠ 1 và M = x x x + 1 + x 2 x x + x 2 - 1 x x > 0 ta được.
A. D = 1 y ; M = 2 x - x
B. D = 2 y ; M = 2 x - x
C. D = 1 y ; M = - 2 x + x
D. D = y 2 ; M = 2 x - x
Rút gọn biểu thức 3x(x – y) + (x – y) ta được kết quả :
A.3x(x - y)2
B.(x - y)(3x - 1)
C.(x - y)(3x)
D.(x - y)(3x + 1)
Rút gọn và tính giá trị của biểu thức sau: D= (x-2)^3-(y-3)^2+(x-y)(x^2+xy+y^2)-(x+y)^3 tại x=1; y=1/2
Rút gọn biểu thức:
a) M=(x-1)3-3x.(x-1)2+3x2.(x-1)+x3
b) D= (x- y)3-3.(x-y)2x+3.(x-y)x2-x3
Giải chi tiết giúp mình nha.Cảm ơn.
Lời giải:
Áp dụng HĐT: $(a-b)^3=a^3-b^3-3ab(a-b)$ cho cả hai bạn.
a.
$M=x^3-1-3x(x-1)-3x(x-1)^2+3x^2(x-1)+x^3$
$=2x^3-1+3x(x-1)[-1-(x-1)+x]$
$=2x^3-1+3x(x-1).0=2x^3-1$
b.
$D=[(x-y)-x]^3=-y^3$
1) Rút gọn biểu thứ
A=\(\left(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}+\dfrac{\sqrt{x^3}-\sqrt{y^3}}{y-x}\right):\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
a) Rút gọn A
b) Chứng minh A<1
Lời giải:
a) ĐK: $x\geq 0; y\geq 0; x\neq y$
\(A=\left[\frac{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})}{\sqrt{x}-\sqrt{y}}-\frac{(\sqrt{x}-\sqrt{y})(x+\sqrt{xy}+y)}{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})}\right]:\frac{x-\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)
\(=\left(\sqrt{x}+\sqrt{y}-\frac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\right).\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)
\(=\frac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}.\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}=\frac{\sqrt{xy}}{x-\sqrt{xy}+y}\)
b) \(1-A=\frac{(\sqrt{x}-\sqrt{y})^2}{x-\sqrt{xy}+y}>0\) với mọi $x\neq y; x,y\geq 0$
$\Rightarrow A< 1$
Bài 2: Rút gọn biểu thức:
a/ A = (3x–1)2 + (x+3)(2x–1)
b/ B = x(x–y) + y(x–y)
e/ C = (x–2)(x2+2x+ 4) – x(x2 –2)
f/ D = (x+y)2– (x–y)2
\(a.\left(3x-1\right)^2+\left(x+3\right)\left(2x-1\right)\)
\(=9x^2-6x+1-2x^2+x-6x+3\)
\(=7x^2-11x+4\)
Rút gọn các biểu thức sau:
a) ( x + y)2 + (x - y)2 b) ( x + y)2 + (x - y)2 + 2( x+ y) ( x- y)
c) (2+3y)2-(2x-3y)2-12xy d) ( 3x + 1)2 - (3x - 1)2
e)(x+1)(x2-x+1)-(x-1)(x2+x+1)
a: \(=x^2+2xy+y^2+x^2-2xy+y^2=2x^2+2y^2\)
b: \(=\left(x+y+x-y\right)^2=\left(2x\right)^2=4x^2\)
d: \(=9x^2+6x+1-9x^2+6x-1=12x\)
Rút gọn các biểu thức sau:
a) ( x + y)2 + (x - y)2 b) ( x + y)2 + (x - y)2 + 2( x+ y) ( x- y)
c) (2+3y)2-(2x-3y)2-12xy d) ( 3x + 1)2 - (3x - 1)2
e)(x+1)(x2-x+1)-(x-1)(x2+x+1)
a: \(=x^2+2xy+y^2+x^2-2xy+y^2=2x^2+2y^2\)
e: \(=x^3+1-x^3+1=2\)
2 a. rút gọn biểu C = \(\dfrac{2x^{\text{2}}-x}{\text{x }-1}+\dfrac{x+1}{1-x}+\dfrac{2-x^2}{x-1}\)
b. Rút gọn biểu thức D = \(\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{\text{a}}-1}\right):\dfrac{\sqrt{\text{a}}+1}{a-2\sqrt{a}+1}\)
Vậy khi rút gọn một biểu thức hửu tỉ và một biểu thức chứa căn có tìm điều kiện xác định không?
\(a,C=\dfrac{2x^2-x-x-1+2-x^2}{x-1}\left(x\ne1\right)\\ C=\dfrac{x^2-2x+1}{x-1}=\dfrac{\left(x-1\right)^2}{x-1}=x-1\\ b,D=\dfrac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\left(a>0;a\ne1\right)\\ D=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)
Có
B1: Rút gọn A=\(\left(\frac{x}{x-1}-\frac{1}{x^2}\right):\left(\frac{1}{x+1}+\frac{2}{x^2-1}\right)\)
B2: Rút gọn A=\(\left(\frac{x-y}{x+y}-\frac{x+y}{x-y}\right):\frac{-4y^2}{x-y}\)