tìm x biết
\(\sqrt{3x^2+4}+\sqrt{2004x^2+1}=3-4x^2\)
Tìm x biết:
\(\sqrt{3x^2+4}+\sqrt{2004x^2}\) + 1= 3- 4x\(^2\)
Tìm x biết:
\(\sqrt{3x^2+4}+\sqrt{2004x^2+1}=3-4x^2\)
TRÌNH BÀY CẢ CÁCH LÀM VÀ ĐÁP SỐ CỦA BÀI TOÁN :3 :P
\(\sqrt{3x^2+4}+\sqrt{2004x^2}+1=3-4x^2\)
\(\sqrt{3x^2+4}+\sqrt{2004x^2}+1=3-4x^2\)
giúp đoạn sau là (- 4x^2)
Tìm x biết :a) \(\sqrt{x}\) = \(x\)
b) \(x-2\sqrt{x}=0\)
c) \(\sqrt{x+1}=1-x\)
d) \(\sqrt{3x^2+4}+\sqrt{2004x^2+1}=3-4x^2\)
e) \(\sqrt{3x^2+4}+\sqrt{2007x^2+25}=7-69x^2\)
\(\sqrt{x}=x\)
\(\Rightarrow x-\sqrt{x}=0\)
\(\Rightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\end{matrix}\right.\)
\(x-2\sqrt{x}=0\)
\(\Rightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)
\(\sqrt{x+1}=1-x\)
\(\Rightarrow\left|x+1\right|=1-2x+x^2\)
Với \(x\ge-1\) ta có:
\(x+1=1-2x+x^2\)
\(\Rightarrow x+1-1+2x-x^2=0\)
\(\Rightarrow3x-x^2=0\)
\(\Rightarrow x\left(3-x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\3-x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Với \(x< -1\) ta có:
\(-x-1=1-2x+x^2\)
\(\Rightarrow1-2x+x^2+x-1=0\)
\(\Rightarrow3x+x^2=0\)
\(\Rightarrow x\left(3+x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\3+x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
Còn pt vô tỉ tui chưa học
Câu 2: Tìm x biết:
a. \(\sqrt{x-1}=2\)
b. \(\sqrt{3x+1}=\sqrt{4x-3}\)
c. \(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
d. \(\sqrt{x^2-4x+4}=\sqrt{6+2\sqrt{5}}\)
\(a,\Leftrightarrow x-1=4\Leftrightarrow x=5\\ b,\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{4}\\3x+1=4x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{4}\\x=4\left(tm\right)\end{matrix}\right.\Leftrightarrow x=4\\ c,ĐK:x\ge-5\\ PT\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\\ \Leftrightarrow3\sqrt{x+5}=6\\ \Leftrightarrow\sqrt{x+5}=3\\ \Leftrightarrow x+5=9\\ \Leftrightarrow x=4\left(tm\right)\)
\(d,\Leftrightarrow\sqrt{\left(x-2\right)^2}=\sqrt{\left(\sqrt{5}+1\right)^2}\\ \Leftrightarrow\left|x-2\right|=\sqrt{5}+1\\ \Leftrightarrow\left[{}\begin{matrix}x-2=\sqrt{5}+1\\2-x=\sqrt{5}+1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{5}+3\\x=1-\sqrt{5}\end{matrix}\right.\)
1.Tìm x
a)\(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{(x-1)(x+3)}=4-2x\)
b)\(\sqrt{3x-2}+\sqrt{x-1}=4x-9+2\sqrt{3x^2-5x+2}\)
a) \(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x+3\right)\left(x-1\right)}=-\left(x+3+x-1-6\right)\)\(\left(Đk:x\ge1\right)\)
\(\left(\sqrt{x-1}+\sqrt{x+3}\right)^2+\sqrt{x-1}+\sqrt{x-3}-6=0\)
\(\left(\sqrt{x-1}+\sqrt{x+3}+3\right)\left(\sqrt{x-1}+\sqrt{x+3}-2\right)=0\)
Đến đây em xét các trường hợp rồi bình phương lên là được nha
b) \(\sqrt{3x-2}+\sqrt{x-1}=3x-2+x-1-6+2\sqrt{\left(3x-2\right)\left(x-1\right)}\left(Đk:x\ge1\right)\)
\(\left(\sqrt{3x-2}+\sqrt{x-1}\right)^2-\left(\sqrt{3x-2}+\sqrt{x-1}\right)-6=0\)
\(\left(\sqrt{3x-2}+\sqrt{x-1}-3\right)\left(\sqrt{3x-2}+\sqrt{x-1}+2\right)=0\)
Đến đây em xét các trường hợp rồi bình phương lên là được nha
a/ ĐKXĐ: $x\geq 1$
Đặt $\sqrt{x-1}=a; \sqrt{x+3}=b$ thì pt trở thành:
$a+b+2ab=6-(a^2+b^2)$
$\Leftrightarrow a^2+b^2+2ab+a+b-6=0$
$\Leftrightarrow (a+b)^2+(a+b)-6=0$
$\Leftrightarrow (a+b-2)(a+b+3)=0$
Hiển nhiên do $a\geq 0; b\geq 0$ nên $a+b+3>0$. Do đó $a+b-2=0$
$\Leftrightarrow a+b=2$
Mà $b^2-a^2=(x+3)-(x-1)=4$
$\Leftrightarrow (b-a)(b+a)=4\Leftrightarrow (b-a).2=4\Leftrightarrow b-a=2$
$\Rightarrow \sqrt{x+3}=b=(a+b+b-a):2=(2+2):2=2$
$\Leftrightarrow x=1$ (tm)
b/
ĐKXĐ: $x\geq 1$
Đặt $\sqrt{3x-2}=a; \sqrt{x-1}=b(a,b\geq 0)$. Khi đó pt đã cho trở thành:
$a+b=a^2+b^2-6+2ab$
$\Leftrightarrow a^2+b^2+2ab-(a+b)-6=0$
$\Leftrightarrow (a+b)^2-(a+b)-6=0$
$\Leftrightarrow (a+b+2)(a+b-3)=0$
Hiển nhiên $a+b+2>0$ với mọi $a,b\geq 0$
Do đó $a+b-3=0\Leftrightarrow a+b=3$
$\Leftrightarrow b=3-a$.
Ta thấy $a^2-3b^2=1$. Thay $b=3-a$ vô thì:
$a^2-3(3-a)^2=1$
$\Leftrightarrow (a-2)(a-7)=0$
$\Leftrightarrow a=2$ hoặc $a=7$
Vì $a+b=3$ mà $a,b>0$ nên $a,b<3$. Do đó $a=2$
$\Leftrightarrow \sqrt{3x-2}=2$
$\Leftrightarrow x=2$
1) \(\sqrt{x^2-4x+5}+3=4x-x^2\)
2) \(4\sqrt{x^2-6+6}=x^2-6x +9\)
3) \(\sqrt{x^2-3x^3}+\sqrt{x^2-3x+6}=3\)
4) \(\sqrt[3]{2-x}=1-\sqrt{x-1}\)
Tìm x biết :
\(\sqrt{3x^2+4}+\sqrt{2004x^2+1}=3-4x^2\)
Tìm x,y,z biết :
a) \(\sqrt{x^2+4}+\sqrt{\left(y-2\right)^2+9}=5-z^2\)
b) \(\sqrt{x^2}+\sqrt{y}\le0\)
CM: a) \(\sqrt{2}\) là một số vô tỉ
b) \(\sqrt{2}+1\) là một số vô tỉ
So sánh:
a) \(\sqrt{27}+\sqrt{12}\) và 8
b) 15 và \(\sqrt{235}\)
c) \(\sqrt{21}-\sqrt{5}\) và \(\sqrt{20}-\sqrt{6}\)
- Giup em với ạ!!