Một vật dao động điều hòa với phương trình x = 8 cos π t ( c m ) . Tốc độ trung bình trong 1/4 chu kì kể từ lúc t0 = 0 là:
x = 8 cos π t ( c m )
B. 12 c m / s
C. 16 c m / s
D. 20 c m / s
Một vật dao động điều hòa dọc theo trục Ox với phương trình dao động là x = 4 cos ( 2 πt - π / 3 ) cm (t tính bằng s). Lấy π 2 = 10 . Gia tốc của vật khi có li độ bằng 3 cm là
A. ‒12 cm/s2
B. 120 cm/s2
C. ‒1,2 cm/s2
D. ‒60 cm/s2
Một vật dao động điều hòa theo phương trình x = 20 cos ( 2πt +π/4 ) mm. Ở điểm t = 1/8 s li độ của vật là
\(A^2=x^2+\dfrac{v^2}{\omega^2}\Leftrightarrow16=x^2+\dfrac{\left(20\sqrt{2}\right)^2.10}{10^2.10}\Rightarrow x=\pm2\sqrt{2}\left(cm\right)=\pm\dfrac{\sqrt{2}}{2}A\)
\(\Rightarrow\varphi=\dfrac{\pi}{4}+\dfrac{\pi}{2}\Rightarrow t=\dfrac{3\pi}{4.10\pi}=0,075\left(s\right)\)
Một vật dao động điều hòa theo phương trình x = 10 cos ( 10 πt + π / 3 ) . Thời gian ngắn nhất kể từ lúc vật bắt đầu dao động đến lúc vật có tốc độ 50π cm/s là
A. 0,06 s.
B. 0,05 s.
C. 0,1 s.
D. 0,07 s.
Một vật dao động điều hòa theo phương trình x = 20 cos ( 2πt +π/4 ) mm. Ở điểm t = 1/8 s li độ của vật là A. -14,1 mm B. 5 mm C. 0 mm D. 14,1 mm
Một vật dao động điều hòa dọc theo trục Ox với phương trình vận tốc là overline v = 16π cos(4πt - π/6) cm/ s . Xác định thời điểm lần thứ 2023 vật chuyển động nhanh dần qua vị trí x =2 kể từ lúc bắt đầu dao động
Từ pt \(v=16\pi\cos\left(4\pi t-\dfrac{\pi}{6}\right)=16\pi\cos\left(4\pi t-\dfrac{2\pi}{3}+\dfrac{\pi}{2}\right)\) (cm/s), ta suy ra \(\omega=4\pi\left(rad/s\right)\), lại có \(\omega A=16\pi\Leftrightarrow A=\dfrac{16\pi}{\omega}=4\left(cm\right)\)
\(\varphi_0=-\dfrac{2\pi}{3}\); \(T=\dfrac{2\pi}{\omega}=0,5\left(s\right)\)
Đường tròn lượng giác:
Từ đây, ta có thể thấy tại thời điểm lần thứ 2023 vật chuyển động qua vị trí \(x=2\) kể từ khi dao động, góc quét của vật là \(\Delta\varphi=\dfrac{\pi}{3}+1011.2\pi=\dfrac{6067}{3}\pi\) (rad)
Thời điểm lần thứ 2023 vật chuyển động qua vị trí \(x=2\) kể từ lúc bắt đầu dao động là \(\Delta t=\dfrac{\Delta\varphi}{2\pi}.T=\dfrac{\dfrac{6067}{3}\pi}{2\pi}.0,5=\dfrac{6067}{12}\approx505,58\left(s\right)\)
Một vật dao động điều hòa với phương trình x = 4cos(2πt + π/2)cm. Vận tốc cực đại của vật trong quá trình dao động bằng
A. 2πcm/s.
B. - 8πcm/s.
C. 8πcm/s.
D. 4πcm/s.
Đáp án C
Phương pháp: Áp dụng công thức tính vận tốc cực đại của vật dao động điều hoà v max = Aω
Vận tốc cực đại mà vật đạt được trong quá trình dao động là v max = Aω = 2 π . 4 = 8 π
Một vật dao động điều hòa có phương trình x = 4 cos(10πt + π/6) cm. Tại thời điểm t = 0 vật có tọa độ bằng bao nhiêu?
Một vật dao động điều hòa với phương trình x = 2cos(2πt – π/6) cm. Lấy π2 = 10. Gia tốc của vật tại thời điểm t = 0,25s là:
A. - 40 cm/s2.
B. 40cm/s2.
C. ±40cm/s2.
D. π cm/s2.
Đáp án A
Phương pháp: a = - ω2x
Cách giải:
x (t=0,25s) = 1cm => a = - ω2x = - 40cm/s2
Một vật dao động điều hòa với phương trình x = 5 c o s ( 2 π t + π ) cm. Tốc độ trung bình trong một chu kỳ của vật bằng
A. 0 cm/s
B. 10 cm/s
C. 15 cm/s
D. 20 cm/s
Chọn đáp án D
Tốc độ trung bình trong một chu kì:
v ¯ = S △ t = 4 A T = 4. A ω 2 π = 4.5.2 π 2 π = 20 ( c m / s ) .