Cho các số nguyên a,b,c trong đó:a+b=0
Tính giá trị của biểu thức:
M=ab-ac+b2-bc
Làm giúp mk nha!
Cho ac=b2; ab=c2; a+b+c≠0 và a,b,c là các số khác 0
Tính giá trị biểu thức: P=\(\dfrac{a^{555}}{b^{222}.c^{333}}+\dfrac{b^{555}}{c^{222}.a^{333}}+\dfrac{c^{555}}{a^{222}.b^{333}}\)
giải giúp mik vs!
a) 5x(x-3)-x+3=0
b) x2+3x-2x-6=0
d) 3x2+2x-5
bài 2:
cho a+b+c=0
tính giá trị biểu thức:
A=a3+b3+c(a2+b2)-abc
bài 3
cho a+b=7 và ab=12
tính: a) (a-b)2
b) a3+ b3
Bài 3:
a: \(\left(a-b\right)^2=\left(a+b\right)^2-4ab=7^2-4\cdot12=1\)
b: \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=7^3-3\cdot12\cdot7\)
\(=343-252=91\)
Bài 4:Cho các số x,y thoả mãn đẳng thức 5x2+5y2+8xy-2x+2y+2=0
Tính giá trị của biểu thức:M=(x+y)2019 + (x-2)2020 + (y+1)2021
Cho các số nguyên a, b, c:
a)Tính giá trị biểu thức: $M=ab-ac+b^2-bc$M=ab−ac+b2−bc trong đó $a+b=0$a+b=0
b)Biết $ab-ac+bc-c^2=-1$ab−ac+bc−c2=−1. Chứng minh a,b là 2 số đối nhau
a = 2;b= (-2);c= 3
Thay : a+b+c=2+(-2)+3
. =[2+(-2)]+3
=0+3=3
B)vì a và b là 2 số đối nhau nên ta có :
a =2;b= (-2) và là 2số đối nhau vì
|-2|=2
Cho biểu thức
A = 1/15 . 225/x+2 + 3/14 . 196/3x+6
a) Rút gọn A
b) Tìm các cặp số nguyên x để A có giá trị là 1 số nguyên
c) Trong các giá trị nguyên của A , tìm giá trị nhỏ nhất , lớn nhất
giúp mk nha !!!!
Cho các số nguyên dương a, b, c thỏa mãn điều kiện a+b+c=200. Tìm giá trị lớn nhất của biểu thức M= ab+bc+ca
giúp mk nhanh nhé :)))
Áp dụng cô si ,ta có
\(a^2+b^2\ge2ab\)
\(c^2+b^2\ge2bc\)
\(a^2+c^2\ge2ac\)
\(\Rightarrow2a^2+2b^2+2c^2\ge2ab+2ac+2bc\)
\(a^2+b^2+c^2\ge ab+ac+bc\)
\(\Rightarrow a^2+b^2+c^2+2ab+2ac+2bc\ge3ab+3ac+3bc\)
\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)
\(\Rightarrow200^2\ge3\left(ab+bc+ac\right)\)
\(\Rightarrow\frac{40000}{3}\ge ab+bc+ac\)
Dấu = xảy ra khi a=b=c=200/3
Cho các số nguyên a,b,c trong đó:
a+b=0
Tính giá trị biểu thức:
M=ab-ac+b2-bc
Làm chi tiết nha !
Biết lim x → 0 3 x + 1 - 1 x = a b , trong đó a,b là các số nguyên dương và phân số a b tối giản. Tính giá trị biểu thức P = a 2 + b 2 .
A.P=13.
B.P= 0.
C. P=5.
D. P=40