CMR nếu m và n là nguyên tố cùng nhau thì tồn tại số k để m^k1chia hết cho n
Co a,b là các số nguyên tố cùng nhau. CMR: tồn tại n,m thỏa mãn: a^m+b^n-1 chia hết cho ab
Bài toán 1 : Chứng minh rằng mọi số nguyên tố p ta có thể tìm được một số được viết bởi hai chữ số chia hết cho p.
Bài toán 2 : Chứng minh rằng nếu một số tự nhiên không chia hết cho 2 và 5 thì tồn tại bội của nó có dạng : 111...1.
Bài toán 3 : Chứng minh rằng tồn tại số có dạng 1997k (k thuộc N) có tận cùng là 0001.
Bài toán 4 : Chứng minh rằng nếu các số nguyên m và n nguyên tố cùng nhau thì tìm được số tự nhiên k sao cho mk - 1 chia hết cho n
CMR nếu 2 số m,n nguyên tố cùng nhau ( m,n thuộc N )
thì luôn tìm được 1 số k sao cho mk-1 chia hết cho n
CMR:nếu m và n nguyên tố cùng nhau thì tồn tại số tự nhiên k sao cho m.k-1 chia hết cho n
Giải nhanh giùm mình nha(trình bày hẳn ra ai nhanh mình cho 4 cái tich)
chứng minh rằng nếu các số nguyên m và n nguyên tố cùng nhau thì tìm đc số tự nhiên k sao cho mk - 1 chia hết cho n
chứng minh nếu m, n là 2 số nguyên tố cùng nhau luôn tìm được k thoả mãn m^k -1 chia hết cho n
Chứng minh rằng nếu các số nguyên m và n nguyên tố cùng nhau thì tìm được số tự nhiên k sao cho mk - 1 chia hết cho n.
ai nhanh mình tik ; ) ₫&@#%$¥€
mk nhanh nefffffffffffffffffffffffffffff
Cho a,b là 2 số nguyên dương không nhỏ hơn 2 và nguyên tố cùng nhau. Nếu m,n là 2 số nguyên dương thỏa mãn: (a^n + b^m) chia hết cho
(a^m + b^n) thì ta có m chia hết cho n.
Trình bày chi tiết và giải nhanh lên nhé
CMR : nếu các số tự nhiên m và n thỏa mãn hệ thức 3m - 2n = 1 thì m và n nguyên tố cùng nhau
giả sử d = ƯCLN ( m , n ) với d \(\ge\) 1 thì m \(⋮\)d và n \(⋮\) d
suy ra : 3m \(⋮\) d , 2n \(⋮\) d
suy ra 3m - 2n = 1 \(⋮\) d
Bởi vì d \(\ge\)1 mà 1 d thì d = 1,
suy ra m và n nguyên tố cùng nhau