Bài toán 1 : Chứng minh rằng mọi số nguyên tố p ta có thể tìm được một số được viết bởi hai chữ số chia hết cho p.
Bài toán 2 : Chứng minh rằng nếu một số tự nhiên không chia hết cho 2 và 5 thì tồn tại bội của nó có dạng : 111...1.
Bài toán 3 : Chứng minh rằng tồn tại số có dạng 1997k (k thuộc N) có tận cùng là 0001.
Bài toán 4 : Chứng minh rằng nếu các số nguyên m và n nguyên tố cùng nhau thì tìm được số tự nhiên k sao cho mk - 1 chia hết cho n
CMR:nếu m và n nguyên tố cùng nhau thì tồn tại số tự nhiên k sao cho m.k-1 chia hết cho n
Giải nhanh giùm mình nha(trình bày hẳn ra ai nhanh mình cho 4 cái tich)
chứng minh rằng nếu các số nguyên m và n nguyên tố cùng nhau thì tìm đc số tự nhiên k sao cho mk - 1 chia hết cho n
Chứng minh rằng nếu các số nguyên m và n nguyên tố cùng nhau thì tìm được số tự nhiên k sao cho mk - 1 chia hết cho n.
ai nhanh mình tik ; ) ₫&@#%$¥€
CMR nếu hai số tự nhiên m và n thỏa mãn biểu thức 3m-2n=1 thì m và n nguyên tố cùng nhau
Câu 1: CMR: Nếu 3 số n, n+k, n+2k là 3 số nguyên tố lớn hơn 3 thì k chia hết cho 6.
Câu 2: Cho p và 8p+1 là 2 số nguyên tố (p>3). CMR: 4p+1 chia hết cho 3.
Người ta chứng minh được rằng:
a) Nếu a chia hết cho m và a chia hết cho n thì a chia hết cho BCNN của m và n
b) Nếu tích a.b chia hết cho c mà b và c là 2 số nguyên tố cùng nhau thì a chia hết cho c.
CMR: n và 6 là 2 số nguyên tố cùng nhau thì (n-1).(n+1) chia hết cho 24
1.a,Tìm stn n để 9n+24 và 3n+4 là 2 số nguyên tố cùng nhau.
b,Tìm số nguyên tố n sao cho n+2 và n+4 đều là số nguyên tố
2.a,Chứng minh với mọi số nguyên x,y nếu:6x+11y chia hết cho 31 thì x+7y chia hết cho 31
b,Chứng minh rằng với mọi STN n khác 0 thì 2n+1 và n(n+1)là 2 số nguyên tố cùng nhau
MNG IUPS EM VS Ạ :))