Số dư của 2^0+2^1+2^2+2^3+...+2^100 khi chia cho 15
số dư của A=2^0+2^1+2^2+2^3+...+2^100 khi chia cho 15 là
A = \(\left(1+2+2^2+2^3\right)+\left(2^4+2^5+2^6+2^7\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)
= \(\left(1+2+4+8\right)+2^4.\left(1+2+4+8\right)+...+2^{97}.\left(1+2+4+8\right)\)
= \(15+2^4.15+...+2^{97}.15\)
= \(15.\left(1+2^4+...+2^{97}\right)\text{ chia hết cho 15}\)
=> A chia hết cho 15
=> Số dư khi chia A cho 15 là 0.
Số dư của 2^0+2^1+2^3+2^4+...+2^100 khi chia cho 15 là
số dư của A=2^0+2^1+2^2+2^3+...+2^100 khi chia cho 15 là gì
Số dư của A = 2^0+2^1+2^2+2^3+........2^100
khi chia cho 15
Số dư của A=2^0+2^1+2^2+2^3+...+2^100 khi chia cho 15 là .
Nhanh lên nhé
Ta có:
A = 1 + ( 2 + 22 + 23 + 24 ) + ... + 296( 2 + 22 + 23 + 24 )
A = 1 + 30 + ... + 296 . 30
A = 1 + 30( 1 + 24 + ... + 296 )
Mà 30 chia hết cho 15 nên 30( 1 + 24 + ... + 296 ) chia hết cho 15
\(⇒\) 1 + 30( 1 + 24 + ... + 296 ) : 15 dư 1
\(⇒\) A : 15 dư 1
Số dư của A=2^0+2^1+2^2+...+2^100 khi chia cho 15 là
A=1+(21+22+23+24)+...+(297+298+299+2100)
A=1+2(1+2+22+23)+...+297(1+2+22+23)
A=1+(1+2+22+23)(2+...+297)
A=1+15(2+...+297)
Mà 15(2+...+297) chia hết cho 15
=> A chia 15 dư 1
Ta có:
A= 20 + 21 + 22 + 23 + ... + 2100
= 1 + 21 + 22 + 23 + ... + 2100
= 1 + (21 + 22 + 23 + 24) + ... + 2100
= 1 + (21 + 22 + 23 + 24) + (25 + 26 + 27 + 28) + ... + 290 x 210
= 1 + (21 + 22 + 23 + 24) + 24(21 + 22 + 23 + 24) + ... + 290(21 + 22 + 23 + 24)
= 1 + 30 + 24 x 30 + ... + 290 x 30
= 1 + 30(1 + 24 + ... + 290)
Vì: 30 chia hết cho 15. Suy ra: 30(1 + 24 + ... + 290) chia hết cho 15
Suy ra: 1 + 30(1 + 24 + ... + 290) chia cho 15 dư 1
Vậy: A= 20 + 21 + 22 + 23 + ... + 2100 chia cho 15 dư 1
số dư của A=20+21+23+....+2100 khi chia cho 15 là
A = (2^1+2^2+2^3+2^4) + ..... + (2^97 + 2^98 + 2^99 +2^100) + 1
A = 15.2 + 15.2^5+....+2^97.15 + 1
A = 15.(2+2^5+....+2^97) + 1
Vậy A chia 15 dư 0
Ta có:24=16 đồng dư với 1(mod 15)
=>(24)25=2100 đồng dư với 125(mod 15)
=>2100 đồng dư với 1(mod 15)
=>2100 chia 15 dư 1
=>20+21+..........+2100 chia 15 dư 1
Số dư của a = 2 ^0 + 2^1 + 2^2 + .... + 2^100 khi chia cho 15 là .....
Số dư của \(A=2^0+2^1+2^2+2^3+...+2^{100}\) khi chia cho 15 là bao nhiêu ?
số số hạng của tổng A là :
(100 - 0 ) : 2 + 1 = 51 ( số hạng )
Nhóm 4 số vào 1 nhóm, ta được
51 : 4 = 48 (nhóm) dư 3 số
Ta có:
A= 20+21+22+(23+24+25+26)+...+(297+298+299+2100)
A=7 + 120 + .... + 294.(23+24+25+26)
A= 7 +120+.....+294. 120
A = 7 + 120.(1 + .....+294)
Mà 120 chia hết cho 15
=> 120 .(1+....+294) chia hết cho 15
Mặt khác 7 chia 15 dư 7
=>A chia 15 dư 7