Chứng minh rằng a + b 8 ≥ 64 a b a + b 2 , với mọi a, b ≥ 0
A=7^1+7^2+7^3+7^4+.....+7^2020
a) Thu gọn A
b) Chứng minh rằng 6a+7=7^2021
c) Chứng minh rằng Achia hết cho 8
d) Chứng minh rằng (a+7^2021) chia hết cho 8
e) so sánh 6a+7 với B=343^12345
1:CHỨNG MINH RẰNG:
a: 1018+8 có chia hết cho 72 không?
b: 88+220 có chia hết cho 17 không?
2:CHỨNG MINH RẰNG:
a: Cho A= 2+22+23+.......+220 Chứng minh rằng
A có chia hết cho 3;7;15.
b: Cho B= 3+33+35+.......+31991 Chứng minh rằng B chia hết cho 13;41.
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2 =0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| < |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)
2 = 0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2
Bài 1: Chứng minh rằng
a) P = (a+5)(a+8) chia hết cho 2
b) Q = ab(a+b) chia hết cho 2
Bài 2: cho a thuộc N. chứng minh a2-8 không chia hết cho 5
Bài 3: Chứng minh rằng n5-n chia hết cho 10
Bài 1:
a) P=(a+5)(a+8) chia hết cho 2
Nếu a chẵn => a+8 chẵn=> a+8 chia hết cho 2 => (a+5)(a+8) chia hết cho 2
Nếu a lẽ => a+5 chẵn => a+5 chia hết cho 2 => (a+5)(a+8) chia hết cho 2
Vậy P luôn chia hết cho 2 với mọi a
b) Q= ab(a+b) chia hết cho 2
Nếu a chẵn => ab(a+b) chia hết cho 2
Nếu b chẵn => ab(a+b) chia hết cho 2
Nếu a và b đều lẽ => a+b chẵn => ab(a+b) chia hết cho 2
Vậy Q luôn chia hết cho 2 với mọi a và b
bài 3:n5- n= n(n-1)(n+1)(n2+1)=n(n-1)(n+1)(n2+5-4)=n(n-1)(n+1)(n-2)(n+2)+5n(n-1)(n+1).
Vì: n(n-1)(n+1)(n-2)(n+2) là 5 số nguyên liên tiếp thì chia hết cho 10 (1)
ta lại có: n(n+1) là 2 số nguyên liên tiếp nên chia hết cho 2
=> 5n(n-1)n(n+1) chia hết cho 10 (2)
Từ (1) và (2) => n5- n chia hết cho 10
a) a lẻ suy ra a+5 chia hết cho 2
a chẵn suy ra a+8 chia hết cho 2
a, Cho p và p + 4 là các số nguyên tố(p>3). Chứng minh rằng p+8 là hợp số .
b, Chứng minh rằng nếu (d+2c+4b) chia hết cho 8 thì abcd thì chia hết cho 8
Lời giải:
a. Vì $p$ nguyên tố lớn hơn $3$ nên $p$ không chia hết cho $3$.
Nếu $p$ chia $3$ dư $2$, $p$ có dạng $p=3k+2$.
$p+4=3k+6\vdots 3$. Mà $p+4>3$ nên không là số nguyên tố (trái đề)
Do đó $p$ chia $3$ dư $1$
Khi đó: $p+8=3k+1+8=3(k+3)$ chia hết cho $3$. Mà $p+8>3$ nên $p+8$ là hợp số (đpcm)
b.
$\overline{abcd}=1000a+100b+10c+d$
$=1000a+96b+8c+(d+2c+4b)$
$=8(125a+12b+c)+(d+2c+4b)$
Vì $8(125a+12b+c)\vdots 8; d+2c+4b\vdots 8$
$\Rightarrow \overline{abcd}\vdots 8$
Ta có đpcm.
1. Chứng minh rằng: \(3\left(a^8+b^8+c^8\right)\ge\left(a^3+b^3+c^3\right)\left(a^5+b^5+c^5\right)\)
2. Cho a+b=2. Chứng minh rằng: \(a^8+b^8\ge a^7+b^7\)
@Ace Legona
Lời giải
Cách giải đơn giản nhất là khai triển
\(3(a^8+b^8+c^8)\geq (a^3+b^3+c^3)(a^5+b^5+c^5)\)
\(\Leftrightarrow 2(a^8+b^8+c^8)\geq a^5(b^3+c^3)+b^5(c^3+a^3)+c^5(a^3+b^3)\)
\(\Leftrightarrow (a^3-b^3)(a^5-b^5)+(b^3-c^3)(b^5-c^5)+(c^3-a^3)(c^5-a^5)\geq 0(\star)\)
Xét \((a^3-b^3)(a^5-b^5)=(a-b)^2(a^2+b^2)(a^4+a^3b+a^2b^2+ab^3+b^4)\geq 0\) với mọi \(a,b>0\)
và tương tự với các biểu thức còn lại.
Suy ra BĐT \((\star)\) luôn đúng.
Ta có đpcm
Đây chính là một dạng của BĐT Chebyshev:
Với dãy số thực \(a_1\leq a_2\leq ....\leq a_n\) . Nếu tồn tại dãy số thực\(b_1\leq b_2\leq .... \leq b_n\) thì \(n(a_1b_1+a_2b_2+....+a_nb_n)\geq (a_1+a_2+...+a_n)(b_1+b_2+...+b_n)\)
Câu 2:
Tương tự câu 1 thôi.
Do \(a+b=2\) nên bài toán tương đương: \(2(a^8+b^8)\geq (a^7+b^7)(a+b)\)
\(\Leftrightarrow a^8+b^8\geq a^7b+ab^7\Leftrightarrow (a^7-b^7)(a-b)\geq 0\)
\(\Leftrightarrow (a-b)^2(a^6+a^5b+....+ab^5+b^6)\geq 0(\star)\)
Xét \(Q=a^6+a^5b+a^4b^2+a^3b^3+a^2b^4+ab^5+b^6\)
\(Q=(a+b)(a^5+b^5)+a^2b^2(a^2+b^2+ab)\)
Dựa vào điều kiện \(a+b=2\) và biến đổi, ta thu được \(Q=16(2-ab)^2-8ab(2-ab)-a^3b^3\)
Đặt \(ab=t\Rightarrow Q=-t^3+24t^2-80t+64\)
\(\Leftrightarrow Q=(1-t)(t-8)^2+7t^2\)
Với mọi \(a,b\in\mathbb{R}\) ta luôn có \(ab\leq \frac{(a+b)^2}{4}\Rightarrow t\leq 1\). Do đó \(Q\geq 0\)
Kéo theo BĐT \((\star)\) luôn đúng, bài toán luôn đúng. Do đó ta có đpcm.
cho a+b=2 chứng minh rằng \(a^8+b^8\ge a^7+b^7\)
Cần CM : \(a^{k+1}-a^k\ge a-1\)\(\left(k\inℕ\right)\) (1)
\(\Leftrightarrow\)\(a^k\left(a-1\right)-\left(a-1\right)\ge0\)
\(\Leftrightarrow\)\(\left(a-1\right)\left(a^k-1\right)\ge0\)
\(\Leftrightarrow\)\(\left(a-1\right)^2\left(a^{k-1}-a^{k-2}+a^{k-3}-a^{k-4}+...+1\right)\ge0\) ( đúng )
=> (1) đúng
Áp dụng vào bài toán,với k = 7 ta có \(\hept{\begin{cases}a^8-a^7\ge a-1\\b^8-b^7\ge a-1\end{cases}}\Rightarrow a^8+b^8-a^7-b^7\ge a+b-2=0\)
\(\Leftrightarrow\)\(a^8+b^8\ge a^7+b^7\)
Dấu "=" xảy ra khi \(a=b=1\)
Thay b = 2 - a vào phân tích ta được:
VT - VP =
Ối nó ko hiện ảnh nên chị vào thống kê hỏi đáp của em xem nha!
Cho A=10^2012 +10^2011 +10^2010 +10^2009 +8
a) Chứng minh rằng A chia hết cho 24
b) Chứng minh rằng A không phải là 1 số chính phương
a, Vì A có 3 chữ số tận cùng là 008 => A chia hết cho 8 (1)
A có tổng các chữ số là 12 chia hết cho 3 (2)
Từ (1) và (2) với (3,8)=1 => A chia hết cho 24
b, Vì A có chữ số tận cùng là 8 nên A không phải là số chính phương.
Chứng minh rằng:
a) (1033 + 8) ⋮ 18 b) (1010 + 14) ⋮ 6
a/
\(10^{33}⋮2;8⋮2\Rightarrow\left(10^{33}+8\right)⋮2\)
\(10^{33}+8=999...99+1+8=999...99+9\) (33 chữ số 9)
\(999...99+9⋮9\Rightarrow\left(10^{33}+8\right)⋮9\)
Mà 2 và 9 là 2 số nguyên tố cùng nhau
\(\Rightarrow\left(10^{33}+8\right)⋮2x9\Rightarrow\left(10^{33}+8\right)⋮18\)
b/
\(10^{10}⋮2;14⋮2\Rightarrow\left(10^{10}+14\right)⋮2\)
\(10^{10}+14=999..99+1+14=999...99+15⋮3\) (10 chữ số 9)
\(\Rightarrow\left(10^{10}+14\right)⋮3\)
2 và 3 là 2 số nguyên tố cùng nhau
\(\Rightarrow\left(10^{10}+14\right)⋮2x3\Rightarrow\left(10^{10}+14\right)⋮6\)
a) (1033 +8) ⋮ 18
=> Ta phải CM được (1033 +8) ⋮ 2; (1033 +8) ⋮ 9
+) 1033 +8 = \(\overline{...0}+8=\overline{........8}\)
Vì (1033 +8) có chữ số tận cùng là chẵn => (1033 +8) ⋮ 2
+) (1033 +8) có tổng các chữ số = 9 => (1033 +8) ⋮ 9
CMR: (1033 +8) ⋮ 18
b) (1010 + 14) ⋮ 6
=> Ta phải Cm được (1010 + 14) ⋮2 ;(1010 + 14) ⋮ 3
+) (1010 + 14) = \(\overline{......00}+14=\overline{..........14}\)
Vì (1010 + 14) có chữ số tận cùng là số chẵn => (1010 + 14) ⋮ 2
+) Vì (1010 + 14) có tổng các chữ số = 6 => (1010 + 14) ⋮ 3
đã CMR: (1010 + 14) ⋮6
a) Ta có :
\(\left(10^{33}+8\right)⋮9\left(1\right)\)
Ta lại có số tận cùng của \(\left(10^{33}+8\right)\) là 8 (số chẵn)
\(\Rightarrow\left(10^{33}+8\right)⋮2\left(2\right)\)
\(\left(1\right),\left(2\right)\text{}\Rightarrow\left(10^{33}+8\right)⋮\left(2.9\right)\)
\(\Rightarrow\left(10^{33}+8\right)⋮18\left(dpcm\right)\)
b) Ta có :
\(\left(10^{14}+14\right)⋮2\)
mà tổng các chữ số của \(\left(10^{14}+14\right)\) là \(1+1+4=6⋮3\)
\(\Rightarrow\left(10^{14}+14\right)⋮\left(2.3\right)\)
\(\Rightarrow\left(10^{14}+14\right)⋮6\left(dpcm\right)\)