Cho hình nón có đường cao và đường kính đáy đều bằng 2a. Cắt hình nón đã cho bằng một mặt phẳng đi qua trục, diện tích thiết diện bằng
Cho hình nón có đường cao và đường kính đáy cùng bằng 2a. Cắt hình nón bởi mặt phẳng qua trục, diện tích thiết diện bằng
Cho hình nón có đường cao và đường kính đáy cùng bằng 2a. Cắt hình nón bởi mặt phẳng qua trục, diện tích thiết diện bằng
A. 8 a 2
B. a 2
C. 2 a 2
D. 4 a 2
Cho hình nón xoay có đường cao h = 4, bán kính đáy r = 3. Mặt phẳng (P) đi qua đỉnh của hình nón nhưng không qua trục của hình nón và cắt hình nón theo giao tuyến là một tam giác cân có độ dài cạnh đáy bằng 2. Tính diện tích S của thiết diện được tạo ra.
Cho hình nón xoay có đường cao h = 4, bán kính đáy r = 3. Mặt phẳng (P) đi qua đỉnh của hình nón nhưng không qua trục của hình nón và cắt hình nón theo giao tuyến là một tam giác cân có độ dài cạnh đáy bằng 2. Tính diện tích S của thiết diện được tạo ra.
A. S = 91
B. S = 2 3
C. S = 19
D. S = 2 6
Cho hình nón có đường sinh bằng 2a và góc ở đỉnh bằng 90 ° . Cắt hình nón bằng mặt phẳng (P) đi qua đỉnh sao cho góc giữa (P) và mặt đáy hình nón bằng 60 ° . Khi đó diện tích thiết diện là :
A. 4 2 a 2 3
B. 2 a 2 3
C. 8 2 a 2 3
D. 5 2 a 2 3
Cho hình nón tròn xoay có chiều cao bằng 4 và bán kính đáy bằng 3. Mặt phẳng (P) đi qua đỉnh của hình nón và cắt hình nón theo thiết diện là một tam giác cân có độ dài cạnh đáy bằng 2. Diện tích của thiết diện bằng
A. 6
B. 19
C. 2 6
D. 2 3
Phương pháp:
+) Gọi S là đỉnh hình nón và O là tâm đường tròn đáy của hình nón. Giả sử (P) cắt nón theo thiết diện là tam giác SAB.
+) Gọi M là trung điểm của AB, tính SM, từ đó tính S S A B
Cách giải:
Gọi S là đỉnh hình nón và O là tâm đường tròn đáy của hình nón.
Giả sử (P) cắt nón theo thiết diện là tam giác SAB.
Gọi M là trung điểm của AB ta có
Cho hình nón có đường sinh tạo với đáy góc 60 ° Mặt phẳng đi qua trục của cắt theo một thiết diện có bán kính đường tròn ngoại tiếp bằng 2. Thể tích của khối nón là:
A. V = 3 3 π .
B. V = 3 π .
C. V = 9 π .
D. V = 9 3 π .
Cho hình nón có chiều cao bằng 4a. Một mặt phẳng đi qua đỉnh của hình nón và cắt hình nón theo một thiết diện là tam giác đều có diện tích bằng 9\(\sqrt{3}\) a2 . Thể tích khối nón giới hạn bởi hình nón đã cho bằng
Hình nón có thiết diện qua trục là một tam giác đều cạnh 2a, diện tích toàn phần là S 1 và mặt cầu có đường kính bằng chiều cao hình nón, có diện tích S 2 . Khẳng định nào sau đây đúng?