Cho số phức z=a+bi a , b ∈ R thỏa mãn ( 1 + i ) z + 2 z ¯ = 3 + 2 i . Tính P=a+b
Cho số phức thỏa mãn: z=a+bi, ( a , b ∈ R ) thỏa mãn: z ( 2 + i ) = z - 1 + i ( 2 z + 3 ) . Tính S = a + b
Câu 1 : Cho số phức \(z\) thỏa mãn \(z\) + ( 2 - i )\(\overline{z}\) = 3 - 5i. Môđun của số phức w = \(z \) - i bằng bao nhiêu ?
Câu 2 : Cho số phức \(z\) = a + bi, (a,b ∈ R ) thỏa mãn ( 3 + 2i )\(z\) + ( 2 - i )2 = 4 + i. Tính P = a - b
Cho số phức z = a + b i ( a , b ∈ R ) thỏa mãn ( 1 + i ) z + 2 z ¯ = 3 + 2 i . Tính P = a + b
Cho số phức z = a + b i ( a , b ∈ R ) thỏa mãn z+2i+i-|z|(1+i)=0 và |z|>1. Tính P=a+b
A. P=-1
B. P=-5
C. P=3
D. P=7
Cho số phức z thỏa mãn ( - 1 + i ) z + 2 1 - 2 i = 2 + 3 i . Số phức liên hợp của z là z ¯ = a + b i với a,b thuộc R. Giá trị của a+b bằng
A.-1
B.-12
C.-6
D.1
Cho số phức z=a+bi ( a , b ∈ R ) thỏa mãn z + 2 i z ¯ = 3 + 3 i . Tính z
A. z = 2
B. z = 5
C. z = 5
D. z = 2
Cho số phức z=a+bi a , b ∈ R thỏa mãn z = 5 và z ( 2 + i ) ( 1 - 2 i ) là một số thực. Tính P = a + b .
A. P=5
B. P=7
C. P=8
D. P=4
Cho số phức z=a+bi ( a , b ∈ R ) thỏa mãn z + 1 + 2 i - ( 1 + i ) z = 0 ; z > 1 . Tính giá trị của biểu thức P=a+b.
Cho số phức z=a+bi ( a , b ∈ R ) thỏa mãn z + 1 + 2 i - ( 1 + i ) | z | = 0 và |z|>1. Tính giá trị của biểu thức P=a+b
A. P=3
B. P=7
C. P=-1
D. P=-5