Gọi S là diện tích hình phẳng được giới hạn bởi đồ thị hai hàm số y = f 1 ( x ) ; y = f 2 ( x ) (liên tục trên [a;b]) và hai đường thẳng x=a, x=b (a<b). Khi đó S được tính theo công thức nào sau đây?
Cho hàm số y = f(x) liên tục trên đoạn [a;b] Gọi D là hình phẳng giới hạn bởi đồ thị hàm số y = f(x) trục hoành và hai đường thẳng x=a; x=b. Diện tích hình phẳng D được tính bởi công thức.
Cho hai hàm số y = f(x) và y = g(x) liên tục trên đoạn [a;b] Gọi D là hình phẳng giới hạn bởi đồ thị hàm số đó và các đường thẳng x = a; x = b Diện tích S của hình phẳng D được tính theo công thức
Cho hai hàm số y = f(x) và y = g(x) liên tục trên đoạn [ a; b] Gọi D là hình phẳng giới hạn bởi đồ thị hàm số đó và các đường thẳng x = a , x = b a < b . Diện tích S của hình phẳng D được tính theo công thức
A. S = ∫ a b f x − g x d x
B. S = ∫ a b g x − f x d x
C. S = ∫ a b f x − g x d x
D. S = ∫ a b f x − g x d x
Đáp án D
Phương pháp giải: Công thức tính diện tích hình phẳng giới hạn bởi hai đồ thị hàm số
Lời giải:
Diện tích S của hình phẳng D được tính theo công thức là S = ∫ a b f x − g x d x
Cho hình phẳng D giới hạn bởi đồ thị của hai hàm số y=f(x),y=g(x) (phần tô màu như hình vẽ). Gọi S là diện tích hình phẳng D. Mệnh đề nào dưới đây đúng?
A. S = ∫ - 3 0 [ f ( x ) - g ( x ) ] dx .
B. S = ∫ - 3 0 [ g ( x ) - f ( x ) ] dx .
C. S = ∫ - 3 0 [ f ( x ) + g ( x ) ] dx .
D. S = ∫ - 3 1 [ f ( x ) - g ( x ) ] 2 dx .
Cho hàm số f(x) liên tục trên ℝ có đồ thị như hình vẽ. Gọi S là diện tích hình phẳng được giới hạn bởi đồ thị hàm số f (x) trục hoành và trục tung. Khẳng định nào sau đây đúng
A. S = ∫ c d f x dx - ∫ d 0 f x dx
B. S = - ∫ c d f x dx - ∫ d 0 f x dx
C. S = - ∫ c d f x dx + ∫ d 0 f x dx
D. S = ∫ c d f x dx + ∫ d 0 f x dx
Cho hàm số f(x) liên tục trên R có đồ thị như hình vẽ. Gọi S là diện tích hình phẳng được giới hạn bởi đồ thị hàm số f(x) trục hoành và trục tung. Khẳng định nào sau đây đúng:
Gọi S là số đo diện tích của hình phẳng giới hạn bởi hai đồ thị hàm số y = 2 x 2 + 3 x + 1 và y = x 2 − x − 2. Tính cos π S
A.0
B. − 2 2 .
C. 2 2 .
D. 3 2 .
Đáp án B
Xét phương trình
2 x 2 + 3 x + 1 = x 2 − x − 2 ⇔ x 2 + 4 x + 3 = 0 ⇔ x = − 1 x = − 3
Vậy diện tích hình phẳng cần tính là
S = ∫ − 3 − 1 x 2 + 4 x + 3 d x = ∫ − 3 − 1 x 2 + 4 x + 3 d x = 4 3
Vậy cos π S = − 2 2 .
Gọi S là số đo diện tích của hình phẳng giới hạn bởi hai đồ thị hàm số y = 2 x 2 + 3 x + 1 và y = x 2 − x − 2. Tính cos π S
A. 0
B. − 2 2 .
C. 2 2 .
D. 3 2 .
Cho hàm số bậc ba y=f(x) có đồ thị (C) như hình vẽ. Biết đồ thị hàm số đã cho cắt trục Ox tại 3 điểm có hoành độ x 1 , x 2 , x 3 theo thứ tự lập thành cấp số cộng và x 3 - x 1 = 2 3 . Gọi diện tích hình phẳng giới hạn bởi (C) và trục Ox là S. Diện tích S 1 của hình phẳng giới hạn bởi các đường y = f x + 1 , y = - f x - 1 , x = x 1 và x = x 3 bằng
A. .
B. .
C. .
D. .
Gọi S là diện tích hình phẳng giới hạn bởi các đồ thị hàm số: y = x 3 - 3 x ; y = x . Tính S ?
A. S = 4
B. S = 8
C. S = 2 .
D. S = 0