Cho f(x) là hàm số chẵn, liên tục trên R thỏa mãn ∫ 0 1 f ( x ) d x = 2018 và g(x) là hàm số liên tục trên R thỏa mãn g ( x ) + g ( - x ) = 1 Tính tích phân I = ∫ - 1 1 f ( x ) . g ( x ) d x
A. I = 2018
B. I = 504,5
C. I =4036
D. I = 1008
Cho f(x) là hàm số liên tục trên R thỏa mãn f(x) + f'(x) = x và f(0) = 1. Tính f(1).
A. 2/e
B. 1 / e
C. e
D. e / 2
Chọn A
.
Nhân 2 vế của với ta được .
Hay .
Xét .
Đặt .
Suy ra .
Theo giả thiết nên
.
Cho f(x) là hàm số liên tục trên R thỏa mãn f(x) + f'(x) = sinx với mọi x và f(0) = 1. Tính e x f ( π ) .
A. e x - 1 2
B. e x + 1 2
C. e x + 3 2
D. π + 1 2
Cho f(x) là hàm số chẵn, liên tục trên ℝ thỏa mãn ∫ 0 1 f x d x = 2018 và g(x) là hàm số liên tục trên ℝ thỏa mãn g x + g − x = 1 , ∀ x ∈ ℝ . Tính tích phân I = ∫ − 1 1 f x . g x d x
A. I = 2018
B. I = 1009 2
C. I = 4036
D. I = 1008
Cho hàm số y = f (x) thỏa mãn f(0) = 1, f'(x) liên tục trên R và ∫ 0 3 f ' ( x ) dx = 9 .Giá trị của f(3) là
A. 6
B. 3
C. 10
D. 9
Cho hàm số y = f (x) thỏa mãn f(0) = 1, f'(x) liên tục trên R và ∫ 0 3 f ' ( x ) d x = 9 . Giá trị của f(3) là
Cho hàm số f(x) liên tục trên tập R thỏa mãn f ' x x 2 + 1 = 2 x f x + 1 và f(x) > -1, f(0)=0. Tính f 3 .
A. .
B. 9.
C. 3.
D. 0.
Cho hàm số y=f (x) liên tục trên R thỏa mãn l i m x → - ∞ f ( x ) = 0 ; l i m x → + ∞ f ( x ) = 1 . Tổng số đường tiệm cận đứng và ngang của đồ thị hàm số đã cho là:
A. 2
B. 1
C. 3
D. 0
Đáp án A
Phương pháp:
Nếu l i m x → + ∞ y = a hoặc l i m x → - ∞ y = a thì y = a là TCN của đồ thị hàm số y = f(x)
Nếu l i m x → b + y = ∞ hoặc l i m x → b - y = ∞ thì x = b là TCĐ của đồ thị hàm số y = f(x)
Cách giải: Do hàm số liên tục trên R nên đồ thị hàm số không có TCĐ.
l i m x → - ∞ f ( x ) = 0 ; l i m x → + ∞ f ( x ) = 1 → y = 0 và y = 1 là 2 đường TCN của đồ thị hàm số.
Cho hàm số f(x) có đạo hàm f'(x) liên tục trên R và thỏa mãn f ' ( x ) ∈ [ - 1 ; 1 ] với ∀ x ∈ ( 0 ; 2 ) Biết f(0) = f(2) = 1 Đặt I = ∫ 0 2 f ( x ) d x phát biểu dưới đây là ĐÚNG ?
Cho hàm số y=f(x) liên tục, không âm trên R thỏa mãn f ( x ) . f ' ( x ) = 2 x f ( x ) 2 + 1 và f(0)=0. Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y=f(x) trên đoạn [1;3] lần lượt là:
A. M=20;m=2
B. M = 4 11 ; m = 3
C. M = 20 ; m = 2
D. M = 3 11 ; m = 3