Cho P = 1/2^2 + 1/3^2 + 1/4^2 +...+ 1/100^2. CMR: P > 1/3
Cho A=1/2^2+1/3^2+1/4^2+...+1/100^2. CMR: A<3/4
Ta thấy:\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}
Bài 4 :
a,Cho A= 1/2!+1/3!+.....+1/100!
CMR A<1
b, CMR :1-1/2+1/3-1/4+...+1/99-1/100=1/51+1/52+....+1/100
Bài 1: CMR 3/1^2*2^2 + 5/2^2*3^2 + 7/3^2*4^2 + ....... + 19/9^2*10^2 bé hơn 1
Bài 2: CMR 1/3 + 2/3^2 Bài 1: CMR 3/1^2*2^2 + 5/2^2*3^2 + 7/3^2*4^2 + ....... + 19/9^2*10^2 bé hơn 3/4
Bài 3: Cho A= 1/1*2 + 1/3*4 + 1/5*6 + .... + 1/99*100. CMR 7/12 < A < 5/6
ai giúp mình với rồi mình tink cho nha cảm ơn các bạn nhiều
CMR:
a)1/10^2 +1/11^2+1/12^2+...+1/100^2 >3/4
b)1/2^2+1/3^2+1/4^2+...+1/100^2<99/100
c)1/2^2+1/3^2+1/4^2+...+1/100^2<3/4
cho E=1/2^2+1/3^2+1/4^2+...+1/100^2.CMR E<3/4
cho
A=1/2^2+1/3^2+1/4^2+...+1/100^2.CMR A<3/4
CMR:(1+1/2+1/3+1/4+...+1/100)=1/2=2/3+3/4+...+99/100
Cho P = 1/2^2 + 1/3^2 + 1/4^2 +...+ 1/100^2. CMR: P < 1/2
dan ta phai biet su ta cai gi ko biet phai tra google
cmr
100-(1+1/2+1/3+...+1/100)=1/2+2/3+3/4+....+99/100
\(=\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...+\left(1-\frac{1}{100}\right)\)
\(=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)