\(=\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...+\left(1-\frac{1}{100}\right)\)
\(=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)
\(=\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...+\left(1-\frac{1}{100}\right)\)
\(=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)
Cmr : \(\dfrac{1}{3}\) - \(\dfrac{2}{3^2}\) +\(\dfrac{3}{3^3}\) - \(\dfrac{4}{3^4}\) + ...+\(\dfrac{99}{3^{99}}\) - \(\dfrac{100}{3^{100}}\)< \(\dfrac{3}{16}\)
CMR: 1/51 + 1/52 + 1/52 +...+1/100 = 1-1/2 + 1/3 - 1/4 +...+1/99-1/100
CMR \(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)
1/3 - 2/3^2 + 3/3^2 - 4/3^4+ ... + 99/3^99 - 100 / 3^100 < 3/16
chung minh rang 1/3 -1 /3^2 + 3/3^3 -4/3^4+...+99/3^99-100/3^100 < 3/16
A=(1+1/2).(1+1/3).(1+1/4)...(1×1/2009)
B=(1-1/2).(1-1/3)...(1-1/100)
B= 1/2.2/3.3/4...99/100
X+1/99+x+2/98+x+3/97+x+4/96
1. Chứng tỏ rằng tổng 100 số đầu tiên của dãy sau nhỏ hơn 1/4:
1/5; 1/45;1/117;1/221;1/357;...
2.tính A/B biết:
A=1/1.300+1/2.301+1/3.302+...+1/101.400
B=1/1.102+1/2.103+...+1/299.400
3.
Chứng minh rằng; 100-(1+1/2+1/3+...+1/100)=1/2+2/3+...+99/100
4. Tính A/B biết : A=1/2+1/3+...+1/200
B=1/199+2/198+...+199/1
5. Tính: 1-1/2+1/3-1/4+...+1/99-1/100 phần 1/51+1/52+...+1/100
C=\(\frac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\)
D=\(\frac{3737.43-4343.37}{2+4+6+...+100}\)
Cho M =\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\) .Hãy chứng minh M<\(\frac{3}{16}\)
Câu 2 Chứng minh rằng :
\(\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}< \frac{1}{50}\)