giải hệ phương trình sau :\(6x^2-3xy+x=1-y\)và \(x^2+y^2=1\)
Giải hệ phương trình: \(\hept{\begin{cases}6x^2-3xy+x=1-y\\x^2+y^2=1\end{cases}}\)
Giải hệ phương trình: \(\hept{\begin{cases}x^3+3xy^2=\frac{1}{2}\\x^4+6x^2y^2+y^4=\frac{1}{2}\end{cases}}\)
giải hệ phương trình sau: 2x(x^2+3)-y(x^3+3)=3xy(x-y) và (x^2-2)^2=4(2-y)
Giải hệ phương trình sau :
\(\hept{\begin{cases}\frac{25}{9}+\sqrt{9x^2-4}=\frac{1}{9}\left(\frac{2}{x}+\frac{18x}{y^2-2y+2}+25y\right)\\7x^3+y^3+3xy\left(x-y\right)-12x^2+6x=1\end{cases}}\)
a) 9x2 - 36
=(3x)2-62
=(3x-6)(3x+6)
=4(x-3)(x+3)
b) 2x3y-4x2y2+2xy3
=2xy(x2-2xy+y2)
=2xy(x-y)2
c) ab - b2-a+b
=ab-a-b2+b
=(ab-a)-(b2-b)
=a(b-1)-b(b-1)
=(b-1)(a-b)
P/s đùng để ý đến câu trả lời của mình
giải hệ phương trình x^2(y+1)+3x+1=x^2 . căn(1-y) và x^2+9=6x căn(1-y) - căn(x-1)
Giải hệ phương trình \(\left\{{}\begin{matrix}6x^2-3xy+x=1-y\\x^2+y^2=1\end{matrix}\right.\)
Giải hệ phương trình sau
\(\left\{{}\begin{matrix}x+y+\sqrt{y-2x}=x^2+2\\x^2+y-3xy=x+10\end{matrix}\right.\)
Bài 1 Giải phương trình nghiệm nguyên sau :
a, 2x + 13y = 156
b, 2xy - 4x + y =7
c, 3xy + x - y =1
d, 2x^2 + 3xy - 2y^2 = 7
e, x^3 - y^3 =91
g, x^2 - xy = 6x -5y - 8
a) \(2x+13y=156\) (1)
.Ta thấy 156 và 2y đều chia hết cho 2 nên \(13y\) chia hết cho 2,do đó y chia hết cho 2 (do 13 và 2 nguyên tố cùng nhau)
Đặt \(y=2t\left(t\in Z\right)\).Thay vào phương trình (1),ta được:\(2x+13.2t=156\Leftrightarrow x+13t=78\)
Do đó \(\hept{\begin{cases}x=78-13t\\y=2t\end{cases}}\) (t là số nguyên tùy ý)
b)Biến đổi phương trình thành: \(2xy-4x=7-y\)
\(=2x\left(y-2\right)=7-y\).Ta thấy \(y\ne2\)(vì nếu y = 2 thì ta có 0.2x = 5 , vô ngiệm )
Do đó \(x=\frac{7-y}{y-2}=\frac{7+2-y-2}{y-2}=\frac{9}{y-2}-1\) .Do vậy để x nguyên thì \(\frac{9}{y-2}\) nguyên
hay \(y-2\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\).Đến đây lập bảng tìm y là xong!
c) \(3xy+x-y=1\)
\(\Leftrightarrow9xy+3x-3y=3\)
\(\Leftrightarrow9xy+3x-3y-1=2\)
\(\Leftrightarrow3x\left(3y+1\right)-1\left(3y+1\right)=2\)
\(\Leftrightarrow\left(3x-1\right)\left(3y+1\right)=2\).Đến đây phương trình đã được đưa về phương trình ước số,bạn tự giải (mình lười quá man!)
AI K MÌNH MÌNH K LẠI