Tìm giá trị của b biết:
a+b=ab=\(\frac{a}{b}\)
tìm giá trị nguyên của n để hiệu
biểu thức A và B đồng thời chia hết cho C biết:
a) A=xny2n+3z2,B=21x6y3-n,C=22xn-1y2
\(ChoQ=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}\)
a. Tìm điều kiện b,d để Q có ngjiax
b. Cm: Giá trị của Q không thuộc vào giá trị a
\(Q=\sqrt{a}+\sqrt{b}-\sqrt{a}+\sqrt{b}=2\sqrt{b}\)
DK: \(a,b\ge0\)do \(Q=2\sqrt{b}\)nên Q ko phụ thuộc vào giá trị của a
1, Tìm số tự nhiên n để phân số: 5n-7/2n-3 có giá trị lớn nhất
2, Cho biểu thức: A=x2+1; B=3-4x
a,Tìm x biết:A+B=0
b, Tìm số nguyên x để 1/A+B có giá trị nguyên
c,Tìm gia trị lớn nhất và nhỏ nhất của biêu thức B/A
a+b+ab=3
tìm giá trị nhỏ nhất của \(y=\frac{3a}{b +1}+\frac{3b}{a+1}+\frac{ab}{a+b}-a^2-b^2\)
Cho \(B=\frac{ab}{a+b}\)(ab lá số tự nhiên có 2 chữ số, a khác 0 ). Tìm giá trị lớn nhất, giá trị nhỏ nhất của B.
Tìm x biết:a)giá trị tuyệt đối của x-2=4 b) x/-2,5=4/5
Tìm x, biết:a) 6252565472=+x b) (4x - 3)4 = (4x - 3)2 ... giá trị của: a) M =
Tính các giá trị lượng giác của góc \(\alpha \), biết:
a, \(cos2\alpha = \frac{2}{5}, - \frac{\pi }{2} < \alpha < 0\)
b, \(\sin 2\alpha = - \frac{4}{9},\frac{\pi }{2} < \alpha < \frac{{3\pi }}{4}\)
\(a,cos2\alpha=2cos^2\alpha-1=\dfrac{2}{5}\\ \Leftrightarrow cos^2\alpha=\dfrac{7}{10}\Rightarrow cos\alpha=\pm\dfrac{\sqrt{70}}{10}\)
Vì \(-\dfrac{\pi}{2}< \alpha< 0\Rightarrow cos\alpha=\dfrac{\sqrt{70}}{10}\)
Ta có:
\(sin^2\alpha+cos^2\alpha=1\\ \Rightarrow sin^2\alpha=1-\dfrac{7}{10}=\dfrac{3}{10}\\ \Rightarrow sin\alpha=\pm\sqrt{30}10\)
Vì \(-\dfrac{\pi}{2}< \alpha< 0\Rightarrow sin\alpha=-\dfrac{\sqrt{30}}{10}\)
\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{-\dfrac{\sqrt{30}}{10}}{\dfrac{-\sqrt{70}}{10}}=-\dfrac{\sqrt{21}}{7}\\ cot\alpha=\dfrac{1}{tan\alpha}=\dfrac{1}{-\dfrac{\sqrt{21}}{7}}=-\dfrac{\sqrt{21}}{3}\)
\(b,sin^22\alpha+cos^22\alpha=1\\ \Rightarrow cos2\alpha=\sqrt{1-\left(-\dfrac{4}{9}\right)^2}=\pm\dfrac{\sqrt{65}}{9}\)
Vì \(\dfrac{\pi}{2}< \alpha< \dfrac{3\pi}{4}\Rightarrow\pi< 2\alpha< \dfrac{3\pi}{2}\Rightarrow cos2\alpha=-\dfrac{\sqrt{65}}{9}\)
\(cos2\alpha=2cos^2\alpha-1=-\dfrac{\sqrt{65}}{9}\\ \Rightarrow cos\alpha=\pm\sqrt{\dfrac{9-\sqrt{65}}{18}}\)
Vì \(\dfrac{\pi}{2}< \alpha< \dfrac{3\pi}{4}\Rightarrow cos\alpha=-\sqrt{\dfrac{9-\sqrt{65}}{18}}\)
\(sin^2\alpha+cos^2\alpha=1\\ \Rightarrow sin^2\alpha=\dfrac{9+\sqrt{65}}{18}\\ \Rightarrow sin\alpha=\pm\sqrt{\dfrac{9+\sqrt{65}}{18}}\)
Vì \(\dfrac{\pi}{2}< \alpha< \dfrac{3\pi}{4}\Rightarrow sin\alpha=\sqrt{\dfrac{9+\sqrt{65}}{18}}\)
\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{\sqrt{\dfrac{9+\sqrt{65}}{18}}}{-\sqrt{\dfrac{9-\sqrt{65}}{18}}}\approx-4,266\\ cot\alpha=\dfrac{1}{tan\alpha}\approx-0,234\)
Tính các giá trị lượng giác của góc 2\(\alpha \), biết:
a, \(\sin \alpha = \frac{{\sqrt 3 }}{3},0 < \alpha < \frac{\pi }{2}\)
b, \(\sin \frac{\alpha }{2} = \frac{3}{4},\pi < \alpha < 2\pi \)
\(a,sin^2\alpha+cos^2\alpha=1\\ \Rightarrow cos\alpha=\pm\sqrt{1-sin^2\alpha}=\pm\sqrt{1-\left(\dfrac{\sqrt{3}}{3}\right)^2}=\pm\dfrac{\sqrt{6}}{3}\)
Vì \(0< \alpha< \dfrac{\pi}{2}\Rightarrow cos\alpha=\dfrac{\sqrt{6}}{3}\)
\(sin2\alpha=2sin\alpha cos\alpha=2\cdot\dfrac{\sqrt{3}}{3}\cdot\dfrac{\sqrt{6}}{3}=\dfrac{2\sqrt{2}}{3}\\ cos2\alpha=2cos^2\alpha-1=2\cdot\left(\dfrac{\sqrt{6}}{3}\right)^2-1=\dfrac{1}{3}\\ tan2\alpha=\dfrac{sin2\alpha}{cos2\alpha}=\dfrac{\dfrac{2\sqrt{2}}{3}}{\dfrac{1}{3}}=2\sqrt{2}\\ cot2\alpha=\dfrac{1}{tan2\alpha}=\dfrac{1}{2\sqrt{2}}=\dfrac{\sqrt{2}}{4}\)
\(b,sin^2\dfrac{\alpha}{2}+cos^2\dfrac{\alpha}{2}=1\\ \Rightarrow cos\dfrac{\alpha}{2}=\pm\sqrt{1-sin^2\dfrac{\alpha}{2}}=\pm\sqrt{1-\left(\dfrac{3}{4}\right)^2}=\pm\dfrac{\sqrt{7}}{4}\)
Vì \(\pi< \alpha< 2\pi\Rightarrow\dfrac{\pi}{2}< \dfrac{\alpha}{2}< \pi\Rightarrow cos\alpha=-\dfrac{\sqrt{7}}{4}\)
\(sin\alpha=2sin\dfrac{\alpha}{2}cos\dfrac{\alpha}{2}=2\cdot\dfrac{3}{4}\cdot\left(-\dfrac{\sqrt{7}}{4}\right)=-\dfrac{3\sqrt{7}}{8}\\ cos\alpha=2cos^2\dfrac{\alpha}{2}-1=2\cdot\left(-\dfrac{\sqrt{7}}{4}\right)^2-1=-\dfrac{1}{8}\\sin2\alpha=2sin\alpha cos\alpha=2\cdot\left(-\dfrac{3\sqrt{7}}{8}\right)\cdot\left(-\dfrac{1}{8}\right)=\dfrac{3\sqrt{7}}{32}\\ cos2\alpha=2cos^2\alpha-1=2\cdot\left(-\dfrac{1}{8}\right)^2-1=-\dfrac{31}{32}\\ tan2\alpha=\dfrac{sin2\alpha}{cos2\alpha}=\dfrac{\dfrac{3\sqrt{7}}{32}}{-\dfrac{31}{32}}=-\dfrac{3\sqrt{7}}{31}\\ cot2\alpha=\dfrac{1}{tan2\alpha}=\dfrac{1}{-\dfrac{3\sqrt{7}}{31}}=-\dfrac{31\sqrt{7}}{21}\)
Cho \(\left|\frac{a+b}{ab}\right|-\frac{a-b}{ab}-\frac{z}{c}\) + \(\left|\frac{a-b}{ab}\right|+\frac{2}{c}\) = 4
TÌm max { 1/a; 1/b; 1/c } ( Tìm giá trị lớn nhất trong 3 giá trị ấy )