Cho số phức z thỏa mãn 3 i z - z - = 1 + 5 i . Môđun của z bằng
A. 65 5
B. 5 2 4
C. 65 4
D. 5
Câu 1 : Cho số phức \(z\) thỏa mãn \(z\) + ( 2 - i )\(\overline{z}\) = 3 - 5i. Môđun của số phức w = \(z \) - i bằng bao nhiêu ?
Câu 2 : Cho số phức \(z\) = a + bi, (a,b ∈ R ) thỏa mãn ( 3 + 2i )\(z\) + ( 2 - i )2 = 4 + i. Tính P = a - b
Cho số phức z thỏa mãn điều kiện: z - 1 + 2 i = 5 và w = z + 1 + i có môđun lớn nhất. Số phức z có môđun bằng:
A. 2 5
B. 3 2
C. 6
D. 5 2
Cho số phức z thỏa mãn điều kiện: z - 1 + 2 i = 5 và w = z +1 +i có môđun lớn nhất. Số phức z có môđun bằng:
A. 6
B. 3 2
C. 5 2
D. 2 5
Cho số phức z thỏa mãn điều kiện | z - 1 + 2 i | = 5 và w=z+1+i có môđun lớn nhất. Số phức z có môđun bằng
A. 2 5
B. 3 2
C. 6
D. 5 2
Cho số phức z thỏa mãn ( 3 + i ) z - i z = 7 - 6 i . Môđun của số phức z bằng
Cho số phức z thỏa mãn 2z-i z ¯ =2+5i . Môđun của số phức z bằng
A. .
B..
C..
D.
Cho số phức z thỏa mãn
z
(
1
-
2
i
)
+
z
¯
i
=
15
+
i
Tìm môđun của số phức z.
A. z = 5
B. z = 4
C. z = 2 5
D. z = 2 3
Đáp án A
Phương pháp
Gọi
Sử dụng định nghĩa hai số phức bằng nhau.
Cách giải
Cho số phức z thỏa mãn (1-3i)z+1+i=-z. Môđun của số phức w=13z+2i có giá trị bằng:
A. -2
B. 26 13
C. 10
D. - 4 13
Cho số phức z thỏa mãn điều kiện z - 3 + 2 i = z - i Giả sử w là số phức có môđun nhỏ nhất trong các số phức z thỏa mãn điều kiện trên. Tính môđun của w
Cho số phức z thỏa mãn z - 1 + 2 i =3 . Tìm môđun nhỏ nhất của số phức z-1 +i
A. 4
B. 2 2
C. 2
D. 2