Tính giá trị của các biểu thức:
B = (192 + 188) x a + 389 x a với a = 4
Cho biểu thức A = 682 + x – 371 và B = 898 – x + 389
Tính giá trị của biểu thức A và B với x = 492 và tính hiệu A – B
Với x = 492 thì A = 682 + 492 – 371 = 803
Với x = 492 thì B = 898 – 492 + 389 = 795
Có A – B = 803 – 795 = 8
Cho biểu thức A = 682 + x – 371 và B = 898 – x + 389
Tính giá trị của biểu thức A và B với x = 100 và tính tổng A + B
Với x = 100 thì A = 682 + 100 – 371 = 411
Với x = 100 thì B = 898 – 100 + 389 = 1187
Có A + B = 411 + 1187 = 1598
Cho biểu thức:
B = (\(\dfrac{x-2}{2x-2}+\dfrac{3}{2x-2}-\dfrac{x+3}{2x+2}\)) : (\(1-\dfrac{x-3}{x+1}\))
a) Tìm điều kiện của x để giá trị của biểu thức được xác định
b) Tính giá trị của biểu thức B với x = 2005
a) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
b) Ta có: \(B=\left(\dfrac{x-2}{2x-2}+\dfrac{3}{2x-2}-\dfrac{x+3}{2x+2}\right):\left(1-\dfrac{x-3}{x+1}\right)\)
\(=\left(\dfrac{x-1}{2x-2}-\dfrac{x+3}{2x+2}\right):\left(\dfrac{x+1-x-3}{x+1}\right)\)
\(=\left(\dfrac{\left(x-1\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right):\dfrac{-2}{x+1}\)
\(=\dfrac{x^2-1-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{-2}\)
\(=\dfrac{-2x+2}{2\left(x-1\right)}\cdot\dfrac{-1}{2}\)
\(=\dfrac{-2\left(x-1\right)}{2\left(x-1\right)}\cdot\dfrac{-1}{2}\)
\(=\dfrac{1}{2}\)
Vậy: Khi x=2005 thì \(B=\dfrac{1}{2}\)
a/
Để biểu thức được xác định
\(=>\left\{{}\begin{matrix}2x-2\ne0\\2x+2\ne0\\x+1\ne0\end{matrix}\right.\)
\(\odot2x-2\ne0\)
\(2x\ne2\)
\(x\ne1\)
\(\odot2x+2\ne0\)
\(2x\ne-2\)
\(x\ne-1\)
\(\odot x+1\ne0\)
\(x\ne-1\)
Vậy điều kiện xác định của bt là: \(x\ne-1;x\ne\pm2\)
Cho biểu thức:
B = (\(\dfrac{x+1}{2x-2}\) + \(\dfrac{3}{x^2-1}\) - \(\dfrac{x+3}{2x+2}\)) . \(\dfrac{4x^2-4}{5}\)
a) Tìm điều kiện của x để giá trị của biểu thức được xác định.
b) C/m rằng: khi giá trị của x để giá trị của biểu thức được xác định.
Tính giá trị biểu thức:2,308+a với a =7,062;a=9,91
Tính giá trị biểu thức:b+25,068+4,03 với b=1,002;b=5,97
Hình như là thế này
A,2.308+7,062
=9,370
2,308+9,91
=12,218
B,1,002+25,068+4,03
=(1,002+25,068)+4,03
=26,070 +4,03
=30,100
a, Tìm giá trị lớn nhất của biểu thức: A=4x-x^2+3
b. Tìm giá trị nhỏ nhất của biểu thức:B=4x^2-12x+15
c,Tìm giá trị nhỏ nhất của biểu thức:C=4x^2+2y^2-4xy-4y+1
a)
\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Daaus = xayr ra khi: x = 2
b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)
Dấu = xảy ra khi x = 3
c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu = xảy ra khi
2x = y và y = 2
=> x = 1 và y = 2
a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)
Dấu "=" <=> x = 2
b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)
Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)
c) \(4x^2+2y^2-4xy-4y+1\)
= \(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)
= \(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Tính giá trị biểu thức:
B = x - y - (-18) với x = -40 và y = -54
B=x-y-(-18)=x-y+18
Khi x=-40 và y=-54 thì \(B=-40-\left(-54\right)+18\)
\(=-40+54+18\)
=14+18
=32
cho biểu thức:B=[(x+1/2x−2) +(3/x^2−1) −(x+3/2x+2)] .(4x^2−4/5 )
a, tìm điều kiện của x để giá trị của biểu thức được xác định?
b, CMR: khi giá trị của biểu thức được xác định thì nó không phụ thuộc vào giá trị của biến x
a) ĐK : \(x\ne1\); \(x\ne-1\)
b) Ta có biểu thức:
\(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right).\left(\frac{4x^2-4}{5}\right)\)
\(=\left(\frac{x+1}{2.\left(x-1\right)}+\frac{3}{\left(x+1\right)\left(x-1\right)}-\frac{x+3}{2.\left(x+1\right)}\right).\left(\frac{4.\left(x^2-1\right)}{5}\right)\)
\(=\frac{\left(x+1\right)^2+3.2-\left(x+3\right)\left(x-1\right)}{2.\left(x-1\right)\left(x+1\right)}.\frac{4.\left(x+1\right)\left(x-1\right)}{5}\)
\(=\frac{x^2+2x+2+6-x^2-2x+3}{2.\left(x-1\right)\left(x+1\right)}.\frac{4.\left(x+1\right)\left(x-1\right)}{5}=\frac{40.\left(x+1\right)\left(x-1\right)}{10.\left(x+1\right)\left(x-1\right)}=4\)
Vậy giá trị của biểu thức B không phụ thuộc vào biến x khi \(x\ne1;x\ne-1\)
cho biểu thức:B=\(\frac{x+1}{2x-2}+\frac{3}{^{x^2}-1}-\frac{x-3}{2x+2}.\frac{4x^2-4}{5}\)
a, tìm điều kiện của x để giá trị của biểu thức được xác định?
b, CMR: khi giá trị của biểu thức được xác định thì nó không phụ thuộc vào giá trị của biến x