Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Quang Luân
Xem chi tiết
fsdgsdfgsd egdfgsdfg
Xem chi tiết
Monster VRK
Xem chi tiết
Thyy
Xem chi tiết
Tran Le Khanh Linh
9 tháng 4 2020 lúc 21:49

Ta có R là bán kính đường tròn ngoại tiếp một tam giác đều cạnh a thì \(R=\frac{a\sqrt{3}}{a}\) (*)

Dựng 2 tam giác đều BDF và CDG về phía ngoài tam giác ABC, khi đó \(\widehat{BFD}=\widehat{BED}=60^0;\widehat{CGD}=\widehat{CED}=60^o\)

=> BDEF và CDEG là các tứ giác nội tiếp 

Nên R1;R2 lần lượt là bán kính của các đường tròn ngoại tiếp các tam giác đềuy BDF và CDG

Theo (*) ta có: \(R_1=\frac{BD\sqrt{3}}{3};R_2=\frac{CD\sqrt{3}}{3}\Rightarrow R_1R_2=\frac{BD\cdot CD}{3}\)

Mặt khác \(\left(BD+CD\right)^2\ge4\cdot BD\cdot CD\)

=> BD.CD\(\le\frac{\left(BD+CD\right)^2}{4}=\frac{BC^2}{4}=\frac{3R^2}{4}\Rightarrow R_1R_2\le\frac{R^2}{4}\)

Đẳng thức xảy ra khi và chỉ khi

BD=CD, nghĩa là R1;R2 đạt giá trị lớn nhất bằng \(\frac{R^2}{4}\) khi D là trung điểm BC

Khách vãng lai đã xóa
DuMinhPhong
Xem chi tiết
Chu Minh Hiếu
23 tháng 4 2020 lúc 19:24

54646

Khách vãng lai đã xóa
Hoàng Đức
Xem chi tiết
Lê Song Phương
28 tháng 11 2021 lúc 6:16

a) Gọi D,E,F lần lượt là tiếp điểm của (I;r) với MN,PQ,RS; T,U,V lần lượt là tiếp điểm của (I;r) với BC,AC,AB

Xét đường tròn (I;r) có hai tiếp tuyến tại D và U cắt nhau tại M \(\Rightarrow MD=MU\)(tính chất hai tiếp tuyến cắt nhau)

Tương tự, ta cũng có: \(SU=SF;\)\(RF=RT;\)\(QT=QE;\)\(PE=PV;\)\(NV=ND\)

Mà \(P_1=AM+AN+MN=AM+AN+MD+ND=AM+AN+MU+NV\)(1)

\(P_2=BP+BQ+PQ=BP+BQ+PE+QE=BP+BQ+PV+QT\)(2)

\(P_3=CS+CR+SR=CS+CR+SF+RF=CS+SR+RT+SU\)(3)

Từ (1), (2) và (3) \(\Rightarrow P_1+P_2+P_3=AM+AN+MU+NV+BP+BQ+PV+QT+CS+CR+RT+SU\)

\(=AM+AN+BP+BQ+CS+CR+\left(MU+SU\right)+\left(RT+QT\right)+\left(PV+NV\right)\)

\(=AM+AN+BP+BQ+CS+CR+MS+RQ+NP\)

\(=\left(AM+CS+MS\right)+\left(AN+BP+NP\right)+\left(BQ+QR+RC\right)\)

\(=AC+AB+BC=P\)

Vậy đẳng thức được chứng minh

Khách vãng lai đã xóa
My Nè
Xem chi tiết
Tran Le Khanh Linh
8 tháng 4 2020 lúc 13:14

Ta có nếu R là bán kính đường tròn nội tiếp của 1 tam giác đều cạnh a thì: \(R=\frac{a\sqrt{3}}{3}\) (*)

Dựng 2 tam giác đều BDF và tam giác CDG về phía ngoài tam giác ABC, khi đó \(\widehat{BFD}=\widehat{BED}=60^o\)\(\widehat{CGD}=\widehat{CED}=60^o\)

=> BDEF và CDEG là các tứ giác nội tiếp

Nên R1;R2 lần lượt là bán kính của các đường tròn ngoại tiếp các \(\Delta\) đều BDF và CDG

Theo (*) ta có: \(\hept{\begin{cases}R_1=\frac{BD\sqrt{3}}{3}\\R_2=\frac{CD\sqrt{3}}{3}\end{cases}\Rightarrow R_1R_2=\frac{BD\cdot CD}{3}}\)

Mặt khác \(\left(BD+CD\right)^2=4\cdot BD\cdot CD\)

\(\Rightarrow BD\cdot CD\le\frac{\left(BD+CD\right)^2}{4}=\frac{BC^2}{4}=\frac{3R^2}{4}\Rightarrow R_1R_2\le\frac{R^2}{4}\)

Đẳng thức xảy ra khi BD=CD

Khách vãng lai đã xóa
Lê Trần Quỳnh Anh
Xem chi tiết
Tran Le Khanh Linh
11 tháng 4 2020 lúc 8:38

Vẽ đường cao AH của \(\Delta\)ABC

Ta có: \(S_{MAB}=S_{MAC}=\frac{1}{2}S_{ABC}\)mà AM > AH (AH _|_ HM)
Do đó: \(\frac{4}{a}=\frac{2\cdot AH}{S_{ABC}}\le\frac{2AM}{S_{ABC}}=\frac{AM}{S_{MAB}}\left(1\right)\)

Gọi I là tâm đường tròn nội tiếp \(\Delta\)ABC

Ta có \(S_{ABC}=S_{IBC}+S_{IAC}+S_{IAB}\)

\(\Rightarrow S_{ABC}=\frac{r\cdot BC}{2}+\frac{r\cdot AC}{2}+\frac{r\cdot AB}{2}\)

\(\Rightarrow\frac{2}{r}=\frac{AB+BC+AC}{2S_{MAB}}\)

Tương tự xét \(\Delta\)MAB và \(\Delta\)MAC ta cũng có:

\(\hept{\begin{cases}\frac{2}{r_1}=\frac{AM+AB+\frac{BC}{2}}{S_{MAB}}\\\frac{2}{r_2}=\frac{AM+AC+\frac{BC}{2}}{A_{MAC}}\end{cases}\left(2\right)}\)

Do đó: 

\(\frac{4}{a}+\frac{2}{r}\le\frac{MA}{S_{MAB}}+\frac{AB+BC+AC}{2S_{MAB}}=\frac{1}{2}\left(\frac{AM}{S_{MAB}}+\frac{AB+\frac{AC}{2}}{S_{MAB}}\right)+\frac{1}{2}\left(\frac{AM}{S_{MAC}}+\frac{AC+\frac{BC}{2}}{S_{MAC}}\right)=\frac{1}{r_1}+\frac{1}{r_2}\)

Vậy \(\frac{1}{r_1}+\frac{1}{r_2}\ge2\left(\frac{1}{r}+\frac{1}{a}\right)\)

Khách vãng lai đã xóa
Nguyễn Duy Long
Xem chi tiết