Giải các phương trình sau trên tập hợp số phức:
z 4 + z 2 - 6 = 0
Giải các phương trình sau trên tập hợp số phức:
a) z4 + z2 – 6 = 0; b) z4 + 7z2 + 10 = 0
a) \(z^4+z^2-6=0\)
\(\Leftrightarrow z^4+3z^2-2z^2-6=0\)
\(\Leftrightarrow z^2\left(z^2+3\right)-2\left(z^2+3\right)=0\)
\(\Leftrightarrow\left(z^2+3\right)\left(z^2-2\right)=0\)
\(\Leftrightarrow z^2-2=0\) ( Vì: \(\left(z^2+3>0\right)\) )
\(\Leftrightarrow\left[\begin{array}{nghiempt}z=\sqrt{2}\\z=-\sqrt{2}\end{array}\right.\)
b) \(z^4+7z^2+10=0\)
\(\Leftrightarrow z^4+2z^2+5z^2+10=0\)
\(\Leftrightarrow z^2\left(z^2+2\right)+5\left(z^2+2\right)=0\)
\(\Leftrightarrow\left(z^2+2\right)\left(z^2+5\right)=0\) (vô nghiệm)
Vậy hp vô nghiêm
Trần Việt Linh:số phức kìa chưa học đừng làm
b) ra \(\pm\sqrt{2}i\) và \(\pm\sqrt{5}i\) ms đúng vô nghiệm cái....
Giải các phương trình sau trên tập hợp số phức:
a) z4 + z2 – 6 = 0; b) z4 + 7z2 + 10 = 0
Giải các phương trình sau trên tập hơn số phức :
a) \(z^4+z^2-6=0\)
b) \(z^4+7z^2+10=0\)
a) Đặt Z = z2 , ta được phương trình Z2 + Z – 6 = 0
Phương trình này có hai nghiệm là Z1 = 2, Z2 = -3
Vậy phương trình có bốn nghiệm là ± √2 và ± i√3.
b) Đặt Z = z2 , ta được phương trình Z2 + 7Z + 10 = 0
Phương trình này có hai nghiệm là Z1 = -5, Z2 = -2
Vậy phương trình có bốn nghiệm là ± i√2 và ± i√5.
Trên tập số phức, cho phương trình sau : ( z + i)4 + 4z2 = 0. Có bao nhiêu nhận xét đúng trong số các nhận xét sau?
1. Phương trình vô nghiệm trên trường số thực R.
2. Phương trình vô nghiệm trên trường số phức C
3. Phương trình không có nghiệm thuộc tập số thực.
4. Phương trình có bốn nghiệm thuộc tập số phức.
5. Phương trình chỉ có hai nghiệm là số phức.
6. Phương trình có hai nghiệm là số thực
A. 0.
B. 1.
C. 3.
D. 2.
Chọn D.
Do đó phương trình có 2 nghiệm thực và 4 nghiệm phức. Vậy nhận xét 4, 6 đúng.
Giải các phương trình sau trên tập hợp số phức :
a) \(-3z^2+2z-1=0\)
b) \(z^4+7z^2+10=0\)
a) Ta có ∆' = 1 - 3 = -2.
Vậy nghiệm của phương trình là z1,2 =
b) Ta có ∆ = 9 - 56 = -47.
Vậy nghiệm của phương trình là z1,2 = ;
c) Ta có ∆ = 49 - 4.5.11 = -171.
Vậy nghiệm của phương trình là z1,2 =
Giải các phương trình sau trên tập số phức:
(3 + 2i)z - (4 + 7i) = 2 - 5i
(3 + 2i).z - (4 + 7i) = 2 – 5i
⇔ (3 + 2i).z = (2 – 5i) + (4 + 7i)
⇔ (3 + 2i).z = 6 + 2i
Giải các phương trình sau trên tập số phức:
(7 - 3i)z + (2 + 3i) = (5 - 4i)z
(7 - 3i)z + (2 + 3i) = (5 - 4i).z
⇔ [(7 – 3i) – (5 – 4i)].z = - (2 + 3i)
⇔ (2 + i).z = -(2 + 3i)
Giải các phương trình sau trên tập số phức :
a) \(3z^2+7z+8=0\)
b) \(z^4-8=0\)
c) \(z^4-1=0\)
a) 3z2 + 7z + 8 = 0 có Δ = 49 – 4.3.8 = -47
Vậy phương trình có hai nghiệm là: z1,2=−7±i√476z1,2=−7±i476
b) z4 – 8 = 0
Đặt Z = z2, ta được phương trình : Z2 – 8 = 0
Suy ra: Z = ± √8
Vậy phương trình đã cho có 4 nghiệm là: z1,2=±4√8,z3,4=±i4√8z1,2=±84,z3,4=±i84
c) z4 – 1 = 0 ⇔ (z2 – 1)(z2 + 1) = 0
Vậy phương trình đã cho có 4 nghiệm là ±1 và ±i
Giải phương trình: ( z - i ) 2 + 4 = 0 trên tập số phức.
(Đề thi tốt nghiệp THPT năm 2011)