Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 3 2018 lúc 12:05

2cos2x – 3cosx + 1 = 0 (1)

đặt t = cosx, điều kiện –1 ≤ t ≤ 1

(1) trở thành 2t2 – 3t + 1 = 0

Giải bài 2 trang 36 sgk Đại số 11 | Để học tốt Toán 11 (thỏa mãn điều kiện).

+ t = 1 ⇒ cos x = 1 ⇔ x = k.2π (k ∈ Z)

Giải bài 2 trang 36 sgk Đại số 11 | Để học tốt Toán 11

Vậy phương trình có tập nghiệm 

Giải bài 2 trang 36 sgk Đại số 11 | Để học tốt Toán 11 (k ∈ Z).

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 10 2019 lúc 16:26

1   +   sin x   -   cos x   -   sin 2 x   +   2 cos 2 x   =   0   ( 1 )     T a   c ó :     1   -   sin 2 x   =   sin x   -   cos x 2     ⇔   2 cos 2 x   =   2 ( cos 2 x   -   sin 2 x )   =   - 2 ( sin x   -   cos x ) ( sin x   +   cos x )     V ậ y   ( 1 )   ⇔   ( sin x   -   cos x ) ( 1   +   sin x   -   cos x   -   2 sin x   -   2 cos x )   =   0     ⇔   ( sin x   -   cos x ) ( 1   -   sin x   -   3 cos x )   =   0

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 3 2017 lúc 9:51

5 sin 2 x   +   3 cos x   +   3   =   0     ⇔   5 ( 1   -   cos 2 x )   +   3 cos x   +   3   =   0     ⇔   5 cos 2 x   -   3 cos x   -   8   =   0     ⇔   ( cos x   +   1 ) ( 5 cos x   -   8 )   =   0     ⇔   cos x   =   - 1     ⇔   x   =   ( 2 k   +   1 ) π ,   k   ∈   Z

Rhider
Xem chi tiết
Rin Huỳnh
24 tháng 11 2021 lúc 10:25

2cos^2(x) - 3cosx + 1 = 0

<=> (cosx - 1)(2cosx - 1) = 0

TH1: cosx = 1 <=> x = k.2pi (k ∈ Z)

TH2: 2cosx = 1 <=> cosx = 1/2 <=> x = pi/3 + k.2pi (k ∈ Z)

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 3 2018 lúc 12:28

Lương Thế liêm
Xem chi tiết
Khánh Russew
3 tháng 8 2019 lúc 9:49

cos2x = 1- sin^x 
sin2x= 2sinxcosx 

Nhóm lại bình thường và giải thôi

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 12 2019 lúc 4:12

2 cos 2 x   -   3 sin 2 x   +   sin 2 x   =   1

- cosx = 0 thỏa mãn phương trình ⇒ phương trình có nghiệm x = π/2+kπ,k ∈ Z.

- Với cosx ≠ 0, chia hai vế cho cos 2   x , tìm được tanx = 1/6.

Vậy phương trình có các nghiệm x = π/2+kπ,k ∈ Z và x = arctan1/6 + kπ,k ∈ Z.

yuki
Xem chi tiết
Hồng Phúc
14 tháng 8 2021 lúc 15:19

\(sin^3x+2sinx+3cosx=0\)

\(\Leftrightarrow sin^3x-sinx+3sinx+3cosx=0\)

\(\Leftrightarrow sinx\left(sin^2x-1\right)+3\left(sinx+cosx\right)=0\)

\(\Leftrightarrow-sinx.cosx+3\left(sinx+cosx\right)=0\)

\(\Leftrightarrow\dfrac{1-\left(sinx+cosx\right)^2}{2}+3\left(sinx+cosx\right)=0\)

\(\Leftrightarrow\left(sinx+cosx\right)^2-6\left(sinx+cosx\right)-1=0\)

\(\Leftrightarrow\left(sinx+cosx\right)^2-6\left(sinx+cosx\right)-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=3+\sqrt{10}\\sinx+cosx=3-\sqrt{10}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{3+\sqrt{10}}{\sqrt{2}}\left(l\right)\\sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{3-\sqrt{10}}{\sqrt{2}}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{4}=arcsin\left(\dfrac{3-\sqrt{10}}{\sqrt{2}}\right)+k2\pi\\x+\dfrac{\pi}{4}=\pi-arcsin\left(\dfrac{3-\sqrt{10}}{\sqrt{2}}\right)+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+arcsin\left(\dfrac{3-\sqrt{10}}{\sqrt{2}}\right)+k2\pi\\x=\dfrac{3\pi}{4}-arcsin\left(\dfrac{3-\sqrt{10}}{\sqrt{2}}\right)+k2\pi\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 12 2017 lúc 2:24

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12