Bài 1 : a) ( x - 8 ) = x - 8
b) ( x + 1 ) = 4 * ( x + 1 )
a) X + 1/4 = 5/8
b) X - 3/5 = 1/10
c) X x 2/7 = 6/11
d) X : 3/2 = 1/4
đ) 7/4 - X = 5/7
e) 5/4 : x = 1/8
\(a,x+\dfrac{1}{4}=\dfrac{5}{8}\)
\(\Leftrightarrow x=\dfrac{5}{8}-\dfrac{1}{4}\)
\(\Leftrightarrow x=\dfrac{5}{8}-\dfrac{2}{8}\)
\(\Leftrightarrow x=\dfrac{3}{8}\)
\(b,x-\dfrac{3}{5}=\dfrac{1}{10}\)
\(\Leftrightarrow x=\dfrac{1}{10}+\dfrac{3}{5}\)
\(\Leftrightarrow x=\dfrac{1}{10}+\dfrac{6}{10}\)
\(\Leftrightarrow x=\dfrac{7}{10}\)
\(c,x\times\dfrac{2}{7}=\dfrac{6}{11}\)
\(\Leftrightarrow x=\dfrac{6}{11}:\dfrac{2}{7}\)
\(\Leftrightarrow x=\dfrac{6}{11}\times\dfrac{7}{2}\)
\(\Leftrightarrow x=\dfrac{42}{22}\)
\(\Leftrightarrow x=\dfrac{21}{11}\)
\(d,x:\dfrac{3}{2}=\dfrac{1}{4}\)
\(\Leftrightarrow x=\dfrac{1}{4}\times\dfrac{3}{2}\)
\(\Leftrightarrow x=\dfrac{3}{8}\)
\(đ,\dfrac{7}{4}-x=\dfrac{5}{7}\)
\(\Leftrightarrow x=\dfrac{7}{4}-\dfrac{5}{7}\)
\(\Leftrightarrow x=\dfrac{49}{28}-\dfrac{20}{28}\)
\(\Leftrightarrow x=\dfrac{29}{28}\)
\(e,\dfrac{5}{4}:x=\dfrac{1}{8}\)
\(x=\dfrac{5}{4}:\dfrac{1}{8}\)
\(\Leftrightarrow x=\dfrac{5}{4}\times8\)
\(\Leftrightarrow x=\dfrac{40}{4}\)
\(\Leftrightarrow x=10\)
Phân tích thành nhân tử
1, a^4+a^2+1
2,a^4+4b^4
3,64x^4+1
4, x^5+x^4+1
5, x^7+x^2+1
6, x^8+x+1
7, x^4-4x^2+4x-1
8, a^16+a^8b^8+b^16
1)
=a^4+2a^2+1-a^2
=(a^2+1)^2-a^2
=(a^2-a+1)(a^2+a+1)
2)
=a^4+4b^4-4a^2b^2
=(a^2+2b^2)^2-4a^2b^2
=(a^2-2ab+2b^2)(a^2+2ab+2b^2)
3)
=(8x^2+1)^2-16x^2
=(8x^2-4x+1)(8x^2+4x+1).
4)
=x^5+x^4+x^3-x^3+1
=x^2(x^2+x+1)-(x-1)(x^2+x+1)
=(x^2-x+1)(x^2+x+1)
5).
=x^7-x+x^2+x+1
=x(x^6-1)+x^2+x+1
=x(x^3-1)(x^3+1)+x^2+x+1
=x(x-1)(x^2+x+1)(x^3+1)+x^2+x+1
=(x^2+x+1)[(x^2-x)(x^3+1)+1]
6)
=x^8-x^2+x^2+x+1
=x^2(x-1)(x^2+x+1)(x^3+1)+x^2+x+1
Xong nhóm x^2+x+1 vào.
7)
=x^4-(2x-1)^2
=(x^2-2x+1)(x^2+2x-1)
8)
=(a^8+b^8)^2-a^8b^8
=(a^8-a^4b^4+b^8)(a^8+a^4b^4+b^8).
a) x/8 = 3/4 + -5/8
b) x/12 = 3/4 + -2/3
c) 1 + 11/13 = 24/x
d) x/6 - 3/4 = 1/12
`x/8 = 3/4 +(-5/8)`
`=>x/8 = 6/8 +(-5/8)`
`=>x/8 = 1/8`
`=>x=1`
`-----`
`x/12 =3/4 +(-2/3)`
`=>x/12 = 9/12 + (-8/12)`
`=> x/12=1/12`
`=>x=1`
`----`
`1+11/13=24/x`
`=> 13/13 +11/13=24/x`
`=> 24/13 =24/x`
`=>x=13`
`----`
`x/6 -3/4=1/12`
`=>x/6 = 1/12 +3/4`
`=>x/6 = 1/12 + 9/12`
`=>x/6 = 10/12`
`=>x/6= 5/6`
`=>x=5`
\(a)\)
\(\dfrac{x}{8}=\dfrac{3}{4}+\dfrac{-5}{8}\)
\(\Rightarrow\dfrac{x}{8}=\dfrac{1}{8}\)
\(\Rightarrow x.8=1.8\)
\(\Rightarrow x.8=8\)
\(\Rightarrow x=8:8\)
\(\Rightarrow x=1\)
\(b)\)
\(\dfrac{x}{12}=\dfrac{3}{4}+\dfrac{-2}{3}\)
\(\Rightarrow\dfrac{x}{12}=\dfrac{1}{12}\)
\(\Rightarrow x.12=1.12\)
\(\Rightarrow x.12=12\)
\(\Rightarrow x=12:12\)
\(\Rightarrow x=1\)
\(c)\)
\(1+\dfrac{11}{13}=\dfrac{24}{x}\)
\(\Rightarrow\dfrac{24}{13}=\dfrac{24}{x}\)
\(\Rightarrow x.24=24.13\)
\(\Rightarrow x.24=312\)
\(\Rightarrow x=312:24\)
\(\Rightarrow x=13\)
\(d)\)
\(\dfrac{x}{6}-\dfrac{3}{4}=\dfrac{1}{12}\)
\(\Rightarrow\dfrac{x}{6}=\dfrac{1}{12}+\dfrac{3}{4}\)
\(\Rightarrow\dfrac{x}{6}=\dfrac{5}{6}\)
\(\Rightarrow x.6=5.6\)
\(\Rightarrow x.6=30\)
\(\Rightarrow x=30:6\)
\(\Rightarrow x=5\)
Tìm x :
a. x+ 6 và 1/8 =8
b. 11/2 * x = 1/5 :1/3
c. x*3/5 + 2/5 *x =4/9 + 1/3
Chú thích : dấu * là dấu nhân
a: \(x+6\dfrac{1}{8}=8\)
=>\(x+\dfrac{49}{8}=\dfrac{64}{8}\)
=>\(x=\dfrac{64}{8}-\dfrac{49}{8}=\dfrac{15}{8}\)
b: \(\dfrac{11}{2}\cdot x=\dfrac{1}{5}:\dfrac{1}{3}\)
=>\(x\cdot\dfrac{11}{2}=\dfrac{1}{5}\cdot3=\dfrac{3}{5}\)
=>\(x=\dfrac{3}{5}:\dfrac{11}{2}=\dfrac{3}{5}\cdot\dfrac{2}{11}=\dfrac{6}{55}\)
c: \(x\cdot\dfrac{3}{5}+\dfrac{2}{5}\cdot x=\dfrac{4}{9}+\dfrac{1}{3}\)
=>\(x\left(\dfrac{3}{5}+\dfrac{2}{5}\right)=\dfrac{4}{9}+\dfrac{3}{9}\)
=>\(x\cdot1=\dfrac{7}{9}\)
=>\(x=\dfrac{7}{9}\)
Phân tích thành nhân tử ( thêm bớt hạng tử)
1, a^4+a^2+1
2,a^4+4b^4
3,64x^4+1
4, x^5+x^4+1
5, x^7+x^2+1
6, x^8+x+1
7, x^4-4x^2+4x-1
8, a^16+a^8b^8+b^16
1, a4 + a2 + 1
= a4 + 2a2 + 1 - a2
= (a2)2 + 2a2 + 1 - a2
= (a2 + 1)2 - a2
= (a2 + 1 - a)(a2 + 1 + a)
2, a4 + 4b4
= (a2)2 + 2. a2 . b2 + (2b)2 - a2 . b2
= (a2 + 2b)2 - (ab)2
= (a2 + 2b - ab)(a2 + 2b + ab)
3, 64x4 + 1
= (8x2)2 + 16x2 + 1 - 16x2
= (8x2 + 1)2 - (4x)2
= (8x2 + 1 - 4x)(8x2 + 1 + 4x)
4, x5 + x4 + 1
= x5 + x4 + x3 - x3 - x2 - x + x + x2 + 1
= (x5 + x4 + x3) - (x3 + x2 + x) + (x + x2 + 1)
= x3(x2 + x + 1) - x(x2 + x + 1) + (x2 + x + 1)
= (x2 + x + 1)(x3 - x + 1)
5, x7 + x2 + 1
= x7 – x + x2 + x + 1
= x(x6 – 1) + (x2 + x + 1)
= x(x3 – 1)(x3 + 1) + (x2 + x + 1)
= x(x3 + 1)(x – 1) (x2 + x + 1) + (x2 + x + 1)
= (x2 + x + 1)[ x(x3 + 1)(x – 1) + 1]
= (x2 + x + 1)(x5 – x4 + x3 – x2 + x – 1)
6, x8 + x + 1
= x8 + x7 + x6 - x7 - x6 - x5 + x5 + x4 + x3 - x4 - x3 - x2 + x2 + x + 1
= (x8 + x7 + x6) - (x7 + x6 + x5) + (x5 + x4 + x3 ) - (x4 + x3 + x2) + (x2 + x + 1)
= x6(x2 + x + 1) - x5(x2 + x + 1) + x3(x2 + x + 1) - x2(x2 + x + 1) + (x2 + x + 1)
= (x2 + x + 1)(x6 - x5 + x3 - x2 + 1)
7, x4 - 4x2 + 4x - 1
= x4 - (4x2 - 4x + 1)
= (x2)2 - (2x - 1)2
= (x2 - 2x + 1)(x2 + 2x - 1)
= (x - 1)2 (x2 + 2x - 1)
8, a16 + a8b8 + b16
= (a16 + 2a8b8 + b16) - a8b8
= (a8 + b8)2 - (a4b4)2
= (a8 + b8 - a4b4)(a8 + b8 + a4b4)
= (a8 + b8 - a4b4)[(a8 + b8 + 2a4b4) - a4b4]
= (a8 + b8 - a4b4)[(a4 + b4)2 - (a2b2)2]
= (a8 + b8 - a4b4)(a4 + b4 - a2b2)(a4 + b4 + a2b2)
= (a8 + b8 - a4b4)(a4 + b4 - a2b2)[(a4 + b4 + 2a2b2) - a2b2]
= (a8 + b8 - a4b4)(a4 + b4 - a2b2)[(a2 + b2) - (ab)2]
= (a8 + b8 - a4b4)(a4 + b4 - a2b2)(a2 + b2 - ab)(a2 + b2 + ab)
Tìm x, biết: a) 121-(115+x)= 3x-(25-9-5x)-8
b)2x+2.3x+1.5x = 10800
c) (3|x-1/2) . (8/15-1/5)+2/3-1
d) x+1/2022 + x+2/2021= x+3/2020 + x+4/2019
\(a,121-\left(115+x\right)=3x-\left(25-9-5x\right)-8\\ 121-115-x=3x-25+9+5x-8\\ 6-x=8x-24\\ 8x+x=-24-6\\ 9x=-30\\ x=-\dfrac{30}{9}=-\dfrac{10}{3}\\ ----\\ b,2^{x+2}.3^{x+1}.5^x=10800\\ \left(2.3.5\right)^x.2^2.3=10800\\ 30^x.12=10800\\ 30^x=\dfrac{10800}{12}=900=30^2\\ Vậy:x=2\)
bài 1 tìm các số nguyên x,y biết a)2^x=8
b) 3^4=27
c)(-1,2).x=(-1,2)^4
d)x:(-3/4)=(-3/4)^2
e)(x+1)^3=-125
f)(x-2)^3=64
bài 2 tìm các số nguyên x,y biết
a)(x-1,2)^2=4
d)(x-1,5)^2=9
e)(x-2)^3=64
a) \(2^x=8\)
⇔ \(2^x=2^3\)
⇒ \(x=3\)
b) \(3^x=27\)
⇔ \(3^x=3^3\)
⇒ \(x=3\)
c) \(\left(-\dfrac{1}{2}\right)x=\left(-\dfrac{1}{2}\right)^4\)
⇔ \(x=\left(-\dfrac{1}{2}\right)^4\div\left(-\dfrac{1}{2}\right)\)
⇔ \(x=\left(-\dfrac{1}{2}\right)^3\)
d) \(x\div\left(-\dfrac{3}{4}\right)=\left(-\dfrac{3}{4}\right)^2\)
⇔ \(x=\left(-\dfrac{3}{4}\right)^2\cdot\left(-\dfrac{3}{4}\right)\)
⇔ \(x=\left(-\dfrac{3}{4}\right)^3=-\dfrac{27}{64}\)
d) \(\left(x+1\right)^3=-125\)
⇔ \(\left(x+1\right)^3=\left(-5\right)^3\)
⇔ \(x+1=-5\)
⇔ \(x=-5-1=-6\)
2:
a: (x-1,2)^2=4
=>x-1,2=2 hoặc x-1,2=-2
=>x=3,2(loại) hoặc x=-0,8(loại)
b: (x-1,5)^2=9
=>x-1,5=3 hoặc x-1,5=-3
=>x=-1,5(loại) hoặc x=4,5(loại)
c: (x-2)^3=64
=>(x-2)^3=4^3
=>x-2=4
=>x=6(nhận)
a, 4*(3-x)^10=9(3-x)^8
b, (x-1)^x+3=(x-1)^x+1
`4.(3-x)^10=9(3-x)^8`
`=>(3-x)^{8}(4(3-x)^2-9)=0`
`=>` $\left[ \begin{array}{l}3-x=0\\(3-x)^2=\dfrac{9}{4}\end{array} \right.$
`=>` $\left[ \begin{array}{l}x=3\\3-x=\dfrac{3}{2}\\3-x=-\dfrac{3}{2}\end{array} \right.$
`=>` $\left[ \begin{array}{l}x=3\\x=\dfrac{3}{2}\\x=\dfrac{9}{2}\end{array} \right.$
Vậy `x=3` hoặc `x=3/2` hoặc `x=9/2`
`b,(x-1)^{x+3}=(x-1)^{x+1}`
`=>(x-1)^{x+1}[(x-1)^2-1]=0`
`=>` $\left[ \begin{array}{l}x-=1\\x-=-1\end{array} \right.$
`=>` $\left[ \begin{array}{l}x=2\\x=1\\x=0\end{array} \right.$
Vậy `x=0` hoặc `x=1` hoặc `x=2`
a) 4(3 - x)10 = 9(3 - x)8
=> (x - 3)8.[4(x - 3)2 - 9) = 0
<=> (x - 3)8.(2x - 6 - 3)(2x - 6 + 3) = 0
<=> (x - 3)8(2x - 9)(2x - 3) = 0
<=> \(\left[{}\begin{matrix}x-3=0\\2x-9=0\\2x-3=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=3\\x=\dfrac{9}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy S = {3;9/2; 3/2}
b) (x - 1)x + 3 = (x - 1)x + 1
<=> (x - 1)x + 1.[(x - 3)2 - 1) = 0
<=>(x - 1)x + 1.(x - 3 - 1)(x - 3 + 1) = 0
<=> (x - 1)x + 1.(x - 4)(x - 2) = 0
<=> \(\left[{}\begin{matrix}x-1=0\\x-4=0\\x-2=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=1\\x=4\\x=2\end{matrix}\right.\)
b) Ta có: \(\left(x-1\right)^{x+3}=\left(x-1\right)^{x+1}\)
\(\Leftrightarrow\left(x-1\right)^{x+3}-\left(x-1\right)^{x+1}=0\)
\(\Leftrightarrow\left(x-1\right)^{x+1}\left[\left(x-1\right)^2-1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^{x+1}=0\\\left(x-1\right)^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=0\\\left(x-1\right)^2=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-1=1\\x-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)
Vậy: S={0;1;2}
Bài 1: Cặp phân số sau có bằng nhau không?
a) -4/3 và 12/9
b) -2/3 và -6/8
Bài 2: Tìm x,y biết
a)x/-3=2/y
b) x/-9=-8/y=-10/15
Bài 3: Rút gọn
a) -24/78
b)19.25/28.95
c) 19-19.8/8-27
Bài 4: So sánh
a) -2/3 và 5/-8
b) 398/-412 và -25/-137
c) -14/21 và 60/72
Bài 5: a) Cho A= 5/n-3 Tìm điều kiện của n để A là phân số
b) Cho B= 2n+7/n+3
Tìm giá trị của n để B là sô nguyên
1:
a: Vì \(\dfrac{-4}{3}=\dfrac{-4\cdot3}{3\cdot3}=\dfrac{-12}{9}=\dfrac{12}{9}\\ \Rightarrow\dfrac{-4}{3}=\dfrac{12}{9}\)
b: Vì : \(-2\cdot3=-6\\ -6\cdot8=-48\)
nên 2 p/s ko bằng nhau