Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thiên Hoàng
Xem chi tiết
Trần Thị Khánh Huyền
Xem chi tiết
Nguyễn Ngọc Anh Minh
18 tháng 8 2021 lúc 7:40

\(\frac{2a}{3b}=\frac{3b}{4c}=\frac{4c}{5d}=\frac{5d}{2a}=\frac{2a+3b+4c+5d}{3b+4c+5d+2a}=1\)

\(\Rightarrow\frac{2a}{3b}+\frac{3b}{4c}+\frac{4c}{5d}+\frac{5d}{2a}=4\)

Khách vãng lai đã xóa
Duong
Xem chi tiết

1: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(a=b\cdot k;c=d\cdot k\)

\(\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{bk}{b\left(k+1\right)}=\dfrac{k}{k+1}\)

\(\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{dk}{d\left(k+1\right)}=\dfrac{k}{k+1}\)

Do đó: \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

2: \(\dfrac{2a+b}{a-2b}=\dfrac{2\cdot bk+b}{bk-2b}=\dfrac{b\left(2k+1\right)}{b\left(k-2\right)}=\dfrac{2k+1}{k-2}\)

\(\dfrac{2c+d}{c-2d}=\dfrac{2dk+d}{dk-2d}=\dfrac{d\left(2k+1\right)}{d\left(k-2\right)}=\dfrac{2k+1}{k-2}\)

Do đó: \(\dfrac{2a+b}{a-2b}=\dfrac{2c+d}{c-2d}\)

3: \(\dfrac{a+b}{a-b}=\dfrac{bk+b}{bk-b}=\dfrac{b\left(k+1\right)}{b\cdot\left(k-1\right)}=\dfrac{k+1}{k-1}\)

\(\dfrac{c+d}{c-d}=\dfrac{dk+d}{dk-d}=\dfrac{d\left(k+1\right)}{d\left(k-1\right)}=\dfrac{k+1}{k-1}\)

Do đó: \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)

4: \(\dfrac{5a+3b}{5c+3d}=\dfrac{5\cdot bk+3b}{5dk+3d}=\dfrac{b\left(5k+3\right)}{d\left(5k+3\right)}=\dfrac{b}{d}\)

\(\dfrac{5a-3b}{5c-3d}=\dfrac{5\cdot bk-3b}{5\cdot dk-3d}=\dfrac{b\left(5k-3\right)}{d\left(5k-3\right)}=\dfrac{b}{d}\)

Do đó: \(\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)

Thảo Trần
Xem chi tiết
_Jun(준)_
14 tháng 9 2021 lúc 21:31

1-b ; 2-e ; 3-d ; 4-a ; 5- c

Nguyễn Ngọc Thanh Vân
Xem chi tiết
Nguyễn Thị Ngọc Ánh
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
HD Film
25 tháng 7 2020 lúc 12:08

Câu 1:
\(4\sqrt[4]{\left(a+1\right)\left(b+4\right)\left(c-2\right)\left(d-3\right)}\le a+1+b+4+c-2+d-3=a+b+c+d\)

Dấu = xảy ra khi a = -1; b = -4; c = 2; d= 3

Khách vãng lai đã xóa
Phùng Minh Quân
25 tháng 7 2020 lúc 12:14

\(\frac{a^2}{b^5}+\frac{1}{a^2b}\ge\frac{2}{b^3}\)\(\Leftrightarrow\)\(\frac{a^2}{b^5}\ge\frac{2}{b^3}-\frac{1}{a^2b}\)

\(\frac{2}{a^3}+\frac{1}{b^3}\ge\frac{3}{a^2b}\)\(\Leftrightarrow\)\(\frac{1}{a^2b}\le\frac{2}{3a^3}+\frac{1}{3b^3}\)

\(\Rightarrow\)\(\Sigma\frac{a^2}{b^5}\ge\Sigma\left(\frac{5}{3b^3}-\frac{2}{3a^3}\right)=\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)

Khách vãng lai đã xóa
Nguyen Phan Hung Cuong
25 tháng 7 2020 lúc 19:59

ta sẽ giết ngươi kí tên dép đờ kiu lờ

Khách vãng lai đã xóa
Nhung
Xem chi tiết
Scarlett Ohara
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 7 2021 lúc 16:21

\(a^2+b^2=\left(a+b\right)^2-2ab=7^2-2.10=29\)

\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)=133\)

\(a^4+b^4=\left(a^2+b^2\right)^2-2\left(ab\right)^2=641\)

\(a^5+b^5=\left(a^2+b^2\right)\left(a^3+b^3\right)-\left(ab\right)^2\left(a+b\right)=3157\)

\(a-b=\pm\sqrt{\left(a-b\right)^2}=\pm\sqrt{\left(a+b\right)^2-4ab}=\pm3\)

.
11 tháng 7 2021 lúc 16:30

a, `A = a^2 + b^2 = (a + b)^2 - 2ab`

Thay `a + b = 7 ; ab = 10` vào A ta được:

`A = 7^2 - 2 . 10 = 29`

Vậy `A = 29` tại `a + b = 7 ; ab = 10`

b, `B = a^3 + b^3 = (a + b)^3 - 3ab (a + b)`

Thay `a + b = 7 ; ab = 10` vào B ta được:

`B = 7^3 - 3 . 10 . 7 = 133`

Vậy `B = 133` tại `a + b = 7 ; ab = 10`

c, Ta có: `a^2 + b^2 = 29` (chứng minh câu a)

`=> (a^2 + b^2)^2 = 29^2`

`=> a^4 + 2a^2b^2 + b^4 = 841`

Thay `ab = 10` vào biểu thức trên ta được:

`a^4 + 2 . 10^2 + b^4 = 841`

`=> a^4 + b^4 = 841 - 2 . 10^2 = 641`

hay `C = 641`

d, Ta có: `(a^3 + b^3) (a^2 + b^2) `

`= a^5 + a^3b^2 + a^2b^3 + b^5`

`= a^5 + b^5 + a^2b^2 (a + b)`

hay `133 . 29 = a^5 + b^5 + 10^2 . 7`

 

`=> a^5 + b^5 = 3157`

hay `D = 3157`

e, Ta có: \(E=a-b=\pm\sqrt{\left(a-b\right)^2}=\pm\sqrt{\left(a+b\right)^2-4ab}\)

Thay `a + b = 7` và `ab = 10` vào biểu thức trên ta được:

\(E=\pm\sqrt{7^2-4.10}=\pm3\)

 

Nguyễn Lê Phước Thịnh
12 tháng 7 2021 lúc 0:00

a) \(A=a^2+b^2=\left(a+b\right)^2-2ab=7^2-2\cdot10=29\)

b) \(B=a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)=7^3-3\cdot7\cdot10=343-210=133\)

Nguyễn Lâm Nguyên
Xem chi tiết
Hoàng Nữ Hồng Khánh
21 tháng 9 2021 lúc 12:43

Là sao!!!!!???????!!!!!???