Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nakame Yuuki
Xem chi tiết
Trần Thị Loan
16 tháng 11 2015 lúc 19:13

A B C M N I

Xét tam giác ABN và ACM có: AB = AC (vì tam giác ABC cân tại A); góc A chung; AN = AM (gt)

=> tam giác ABN = ACM (c - g - c)

=> góc ABN = ACM (2 góc tương ứng)

Mà có góc ABC = ACB (do tam giác ABC cân tại A)

Nên góc ABC - ABN = ACB - ACM => góc IBC = ICB => tam giác BIC cân tại I

First Love
16 tháng 11 2015 lúc 19:22

Ko thì còn cách nào nữa Ngô Nam

Jiyoen Phạm
Xem chi tiết
Trần Việt Linh
16 tháng 12 2016 lúc 13:26

A B C M N I 1 2 1 2

a) Xét ΔABN và ΔACM có:

AB=AC(gt)

\(\widehat{A}\) : góc chung

AN=AM(gt)

=> ΔABN=ΔACM(c.g.c)

=> \(\widehat{B_1}=\widehat{C_1}\)

Vì: ΔABC cân tại A(gt)

=> \(\widehat{B}=\widehat{C}\)

Vì: \(\widehat{B}=\widehat{B_1}+\widehat{B_2}\)

\(\widehat{C}=\widehat{C_1}+\widehat{C_2}\)

Mà: \(\widehat{B}=\widehat{C}\left(cmt\right);\widehat{B_1}=\widehat{C_1}\left(cmt\right)\)

=> \(\widehat{B_2}=\widehat{C_2}\)

=> ΔBIC cân tại I

 

Aki Tsuki
16 tháng 12 2016 lúc 13:27

Ta có hình vẽ sau:

B C A M N I

Vì ΔABC cân tại A => \(\widehat{ABC}=\widehat{ACB}\)

và AB = AC

Ta có: MB = AB - AM ; NC = AC - AN

mà AB = AC (cmt) ; AM = AN (gt)

=> MB = NC

Xét ΔNCB và ΔMBC có:

BC: Cạnh chung

\(\widehat{ABC}=\widehat{ACB}\) (cm trên)

MB = NC (cm trên)

=> ΔNCB = ΔMBC (c.g.c)

=> \(\widehat{NBC}=\widehat{MCB}\) (2 góc tương ứng)

\(\widehat{NBC}=\widehat{MCB}\) (cm trên) => ΔBIC cân (đpcm)

Hoàng bình phương
Xem chi tiết
Nguyễn thành Đạt
3 tháng 2 2023 lúc 21:28

a) Xét ΔBMC và ΔCNB có :

          BM=CN ( AB=AC; AM=AN )

          góc B = góc C ( ΔABC cân tại A )

         BC : chung

suy ra : hai Δ trên bằng nhau theo trường hợp ( c-g-c )

suy ra : đpcm

b) chứng minh EBC cân nha em

Từ : ΔBMC = ΔCNB

suy ra : góc MCB = góc NBC ( 2 góc tương ứng )

suy ra : đpcm

c) ta có : ΔABC cân tại A

suy ra : góc B = góc C= \(\dfrac{180-A}{2}\) (1)

ta lại có : ΔAMN cân tại A 

suy ra : góc AMN = góc ANM = \(\dfrac{180-A}{2}\) (2)

Từ (1) và (2) suy ra đpcm do (các góc ở vị trí đồng vị và bằng nhau )

Phan van anh
Xem chi tiết
Nguyễn Ngọc Linh
23 tháng 2 2020 lúc 21:07

Bài 1 : 

Xét \(\Delta ABC\)có AB = AC (gt)

=> \(\Delta ABC\)cân tại A

=> \(\widehat{B}=\widehat{C}\)

MÀ \(\widehat{C}=\)70

=> \(\widehat{B}=\)70

Xét \(\Delta ABC\)có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

=>                       \(\widehat{A}+70^0+70^o=180^o\)

=>                     \(\widehat{A}=180^0-140^o=40^0\)

Vậy \(\widehat{A}=40^0;\widehat{B}=70^0\)

Khách vãng lai đã xóa
Đặng Khánh Trang
Xem chi tiết
Xyz OLM
26 tháng 8 2020 lúc 10:08

A B C M N H P Q

Xét tam giác ABN và tam giác ACM có 

\(\hept{\begin{cases}AB=AC\\AM=AN\left(\frac{1}{3}AB=\frac{1}{3}AC\right)\\\widehat{A}\text{ chung}\end{cases}}\Rightarrow\Delta ABN=\Delta ACM\left(\text{c.g.c}\right)\)

=> BN = CM (cạnh tương ứng)

=> \(\widehat{ABN}=\widehat{ACM}\)(cạnh tương ứng)

b) Vì \(\hept{\begin{cases}\widehat{ABC}=\widehat{ACB}\left(\Delta ABC\text{ cân}\right)\\\widehat{ABN}=\widehat{ACM}\left(cmt\right)\end{cases}}\Rightarrow\widehat{ABC}-\widehat{ABN}=\widehat{ACB}-\widehat{ACM}\)

=> \(\widehat{NBC}=\widehat{MCB}\text{ hay }\widehat{HBC}=\widehat{HCB}\Rightarrow\Delta HBC\text{ cân tại H }\left(ĐPCM\right)\)

=> HB = HC

c) Qua H kẻ đường thẳng PQ // BC (Q \(\in AC;P\in AB\))

Vì PQ//BC

=> \(\hept{\begin{cases}\widehat{APQ}=\widehat{ABC}\left(\text{đồng vị}\right)\\\widehat{AQP}=\widehat{ACB}\left(\text{ đồng vị}\right)\end{cases}}\text{mà }\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{APQ}=\widehat{AQP}\)

=> Tam giác APQ cân tại A

=> AP = AQ

=> PB = QC

Xét tam giác PBH và tam giác QCH có  : 

\(\hept{\begin{cases}PB=QC\left(cmt\right)\\HB=HC\left(\text{câu b}\right)\\\widehat{PBH}=\widehat{QCH}\left(\Leftrightarrow\widehat{ABN}=\widehat{ACM}\left(\text{câu a}\right)\right)\end{cases}\Rightarrow\Delta PBH}=\Delta QCH\left(c.g.c\right)\)

=> PH = QH (cạnh tương ứng)

Xét tam giác APH và tam giác AQH có : 

\(\hept{\begin{cases}AP=AQ\\PH=QH\\AH\text{ chung}\end{cases}}\Rightarrow\Delta APH=\Delta AQH\left(c.c.c\right)\) 

=> \(\widehat{AHP}=\widehat{AHQ}\left(\text{cạnh tương ứng}\right)\text{ mà }\widehat{AHP}+\widehat{AHQ}=180^{\text{o}}\Rightarrow\widehat{AHP}=\widehat{AHQ}=90^{\text{o}}\Rightarrow AH\perp PQ\)

Lại có PQ//BC

=> AH \(\perp\)BC (đpcm)

Khách vãng lai đã xóa
Đỗ Đặng Kim Nguyệt
Xem chi tiết
Chu Mi Mi
8 tháng 2 2020 lúc 8:44

xét tam giácABN và tam giác ACM có  góc A chung

AM = AN (gt)

AB = AC do tam giác ABC cân tại A (gt)

=> tam giác ABN = tam giác ACM (c-g-c)

=> góc ABN = góc ACM (đn)

góc ABC = góc ACB do tam giác ABC cân tại A (Gt)

góc ABN + góc NBC = góc ABC

góc ACM + góc MCB = góc ACB

=> góc IBC = góc ICB 

=> tam giác IBC cân tại I (đl)

Khách vãng lai đã xóa
Trần Hoàng Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 11 2021 lúc 22:32

a: Xét ΔABN và ΔACM có 

AB=AC

\(\widehat{A}\) chung

AN=AM

Do đó: ΔABN=ΔACM

Ky Le  Van
Xem chi tiết
Nguyễn Thị Hòa
29 tháng 7 2017 lúc 15:48

i A M N B C

a)

Xét \(\Delta\)ABN và \(\Delta\)ACM có

\(\widehat{BAN}\)chung 

AB =AC ( \(\Delta ABC\)cân )

AN = AM ( gt)

\(\Rightarrow\Delta ABN=\Delta ACM\)( c .g . c )

\(\Leftrightarrow\widehat{ABN}=\widehat{ACM}\)

Mà \(\widehat{ABC}=\widehat{ACB}\)

\(\Rightarrow\widehat{NBC}=\widehat{MCB}\)

Hay\(\widehat{IBC}=\widehat{ICB}\)

\(\Rightarrow\Delta IBC\)cân tại I

b) Ta có AB = AC ( \(\Delta\)ABC cân ) (1)

IB = IC (\(\Delta\)IBC cân ) (2)

Từ (1) và (2) => AI là đường trung trực của BC ( điểm nằm trên đường trung trực của 1 đoạn thẳng thì cách đều 2 đầu mút )

Chúc bạn học giỏi !!!

Ky Le  Van
29 tháng 7 2017 lúc 15:33

làm ơn giúp mik với ai giải đúng mik sẽ tích cho

Tuấn Hoàng Minh
Xem chi tiết
đặng yến ly
18 tháng 1 2023 lúc 11:10

1 2 1 1 2 1 2 A M N B C

a,Xét tam giác ABN và tam giác ACM có :

AM=AN (gt)

Góc A chung 

AB=AC(gt)

=> tam giác ABN = tam giác ACM (c-g-c)

b,theo câu a =>AMC^=ANB^(1)

Ta có : AM=AN =>tam giác AMN cân tại A => AMN^=ANM^(2)

Từ 1 và 2 =>MNI^=NMI^(3)

Vì B1^=C1^

B^=C^

=>B^-B1^=C-C1^

=>C2^=B2^(4)

Mặt khác : I1^=I2^(đối đỉnh) (5)

Từ 3 ; 4 và 5 => MNI^+NMI^+I1^=180*=I2^+B2^+C2^(tổng 3 góc của 1 tam giác )

=> MNI^+NMI^ / 2 = B2^+C2^ / 2

=> B2^=MNI^

Vì 2 góc này ở vị trí sole trong  và bằng nhau 

=> MN // BC