Cho tam giác ABC cân.Trên AB lấy M,trên AC lấy AC sao cho AM=AN,BN=CM.Gọi giao điểm giữa BN và CM là I.Chứng minh tam giác BIC cân
Cho tam giác ABC cân tại A. Trên AB,AC lần lượt lấy 2 điểm M,N sao cho AM = AN. Gọi giao điểm của BN và CM là I. CM : tam giác BIC cân
Xét tam giác ABN và ACM có: AB = AC (vì tam giác ABC cân tại A); góc A chung; AN = AM (gt)
=> tam giác ABN = ACM (c - g - c)
=> góc ABN = ACM (2 góc tương ứng)
Mà có góc ABC = ACB (do tam giác ABC cân tại A)
Nên góc ABC - ABN = ACB - ACM => góc IBC = ICB => tam giác BIC cân tại I
cho tam giác ABC cân tại A. Trên cạnh AB,AC lần lượt lấy 2 điểm M và N sao cho AM=AN.Gọi giao điểm BN và CM là I. Cm tam giác BIC can
a) Xét ΔABN và ΔACM có:
AB=AC(gt)
\(\widehat{A}\) : góc chung
AN=AM(gt)
=> ΔABN=ΔACM(c.g.c)
=> \(\widehat{B_1}=\widehat{C_1}\)
Vì: ΔABC cân tại A(gt)
=> \(\widehat{B}=\widehat{C}\)
Vì: \(\widehat{B}=\widehat{B_1}+\widehat{B_2}\)
\(\widehat{C}=\widehat{C_1}+\widehat{C_2}\)
Mà: \(\widehat{B}=\widehat{C}\left(cmt\right);\widehat{B_1}=\widehat{C_1}\left(cmt\right)\)
=> \(\widehat{B_2}=\widehat{C_2}\)
=> ΔBIC cân tại I
Ta có hình vẽ sau:
Vì ΔABC cân tại A => \(\widehat{ABC}=\widehat{ACB}\)
và AB = AC
Ta có: MB = AB - AM ; NC = AC - AN
mà AB = AC (cmt) ; AM = AN (gt)
=> MB = NC
Xét ΔNCB và ΔMBC có:
BC: Cạnh chung
\(\widehat{ABC}=\widehat{ACB}\) (cm trên)
MB = NC (cm trên)
=> ΔNCB = ΔMBC (c.g.c)
=> \(\widehat{NBC}=\widehat{MCB}\) (2 góc tương ứng)
Vì \(\widehat{NBC}=\widehat{MCB}\) (cm trên) => ΔBIC cân (đpcm)
Cho Tam giác ABC cân tại A trên cạnh AB lấy M trên AC lấy N sao cho AM = AN . Gọi E là giao điểm của CM và BN
a) chứng minh BN = CM
b) chứng minh IBC cân
c) MN // BC
a) Xét ΔBMC và ΔCNB có :
BM=CN ( AB=AC; AM=AN )
góc B = góc C ( ΔABC cân tại A )
BC : chung
suy ra : hai Δ trên bằng nhau theo trường hợp ( c-g-c )
suy ra : đpcm
b) chứng minh EBC cân nha em
Từ : ΔBMC = ΔCNB
suy ra : góc MCB = góc NBC ( 2 góc tương ứng )
suy ra : đpcm
c) ta có : ΔABC cân tại A
suy ra : góc B = góc C= \(\dfrac{180-A}{2}\) (1)
ta lại có : ΔAMN cân tại A
suy ra : góc AMN = góc ANM = \(\dfrac{180-A}{2}\) (2)
Từ (1) và (2) suy ra đpcm do (các góc ở vị trí đồng vị và bằng nhau )
Bài 1 cho tam giác ABC có AB=AC, góc C=70 độ tính góc A và góc B
bài 2 Cho tam giác ABC cân tại A Trên cạnh AB AC lần lượt lấy hai điểm M N sao cho AM = AN gọi giao điểm của BN và CM là I chứng minh rằng tam giác BIC cân
LÀM NHANH GIÚP MINH NHE
Bài 1 :
Xét \(\Delta ABC\)có AB = AC (gt)
=> \(\Delta ABC\)cân tại A
=> \(\widehat{B}=\widehat{C}\)
MÀ \(\widehat{C}=\)70
=> \(\widehat{B}=\)70
Xét \(\Delta ABC\)có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
=> \(\widehat{A}+70^0+70^o=180^o\)
=> \(\widehat{A}=180^0-140^o=40^0\)
Vậy \(\widehat{A}=40^0;\widehat{B}=70^0\)
Cho tam giác ABC cân tại A. Lấy M thuộc AB sao cho AM= 1/3 AB. Lấy N thuộc AC sao cho AN=1/3 AC. Gọi H là giao điểm của CM và BN. Chứng minh:
a) BN=CM
b) Tam giác BHC cân
c) AH vuông góc BC
Xét tam giác ABN và tam giác ACM có
\(\hept{\begin{cases}AB=AC\\AM=AN\left(\frac{1}{3}AB=\frac{1}{3}AC\right)\\\widehat{A}\text{ chung}\end{cases}}\Rightarrow\Delta ABN=\Delta ACM\left(\text{c.g.c}\right)\)
=> BN = CM (cạnh tương ứng)
=> \(\widehat{ABN}=\widehat{ACM}\)(cạnh tương ứng)
b) Vì \(\hept{\begin{cases}\widehat{ABC}=\widehat{ACB}\left(\Delta ABC\text{ cân}\right)\\\widehat{ABN}=\widehat{ACM}\left(cmt\right)\end{cases}}\Rightarrow\widehat{ABC}-\widehat{ABN}=\widehat{ACB}-\widehat{ACM}\)
=> \(\widehat{NBC}=\widehat{MCB}\text{ hay }\widehat{HBC}=\widehat{HCB}\Rightarrow\Delta HBC\text{ cân tại H }\left(ĐPCM\right)\)
=> HB = HC
c) Qua H kẻ đường thẳng PQ // BC (Q \(\in AC;P\in AB\))
Vì PQ//BC
=> \(\hept{\begin{cases}\widehat{APQ}=\widehat{ABC}\left(\text{đồng vị}\right)\\\widehat{AQP}=\widehat{ACB}\left(\text{ đồng vị}\right)\end{cases}}\text{mà }\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{APQ}=\widehat{AQP}\)
=> Tam giác APQ cân tại A
=> AP = AQ
=> PB = QC
Xét tam giác PBH và tam giác QCH có :
\(\hept{\begin{cases}PB=QC\left(cmt\right)\\HB=HC\left(\text{câu b}\right)\\\widehat{PBH}=\widehat{QCH}\left(\Leftrightarrow\widehat{ABN}=\widehat{ACM}\left(\text{câu a}\right)\right)\end{cases}\Rightarrow\Delta PBH}=\Delta QCH\left(c.g.c\right)\)
=> PH = QH (cạnh tương ứng)
Xét tam giác APH và tam giác AQH có :
\(\hept{\begin{cases}AP=AQ\\PH=QH\\AH\text{ chung}\end{cases}}\Rightarrow\Delta APH=\Delta AQH\left(c.c.c\right)\)
=> \(\widehat{AHP}=\widehat{AHQ}\left(\text{cạnh tương ứng}\right)\text{ mà }\widehat{AHP}+\widehat{AHQ}=180^{\text{o}}\Rightarrow\widehat{AHP}=\widehat{AHQ}=90^{\text{o}}\Rightarrow AH\perp PQ\)
Lại có PQ//BC
=> AH \(\perp\)BC (đpcm)
Cho tam giác ABC cân tại A ,trên cạch ABC lần lượt lấy 2 điểm M,N sao cho AM=AN gọi giao điểm BN và CM là I chứng minh tam giác BIC cân
xét tam giácABN và tam giác ACM có góc A chung
AM = AN (gt)
AB = AC do tam giác ABC cân tại A (gt)
=> tam giác ABN = tam giác ACM (c-g-c)
=> góc ABN = góc ACM (đn)
góc ABC = góc ACB do tam giác ABC cân tại A (Gt)
góc ABN + góc NBC = góc ABC
góc ACM + góc MCB = góc ACB
=> góc IBC = góc ICB
=> tam giác IBC cân tại I (đl)
Cho tam giác ABC cân tại A. Trên cạnh AB, AC lấy hai điểm M, N sao cho AM = AN.
a)CM :ABN=ACM
B)Gọi O là giao điểm của BN và CM. Chứng minh tam giác OBC cân.
a: Xét ΔABN và ΔACM có
AB=AC
\(\widehat{A}\) chung
AN=AM
Do đó: ΔABN=ΔACM
tam giác ABC cân tại A. Trên cạch AB, AC lần lượt là điểm m,n sao cho AM=AN I là giao điểm của Bn và Cm. chứng minh
a)tam giác BIC cân
b)AI là trung trực của BC
a)
Xét \(\Delta\)ABN và \(\Delta\)ACM có
\(\widehat{BAN}\)chung
AB =AC ( \(\Delta ABC\)cân )
AN = AM ( gt)
\(\Rightarrow\Delta ABN=\Delta ACM\)( c .g . c )
\(\Leftrightarrow\widehat{ABN}=\widehat{ACM}\)
Mà \(\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow\widehat{NBC}=\widehat{MCB}\)
Hay\(\widehat{IBC}=\widehat{ICB}\)
\(\Rightarrow\Delta IBC\)cân tại I
b) Ta có AB = AC ( \(\Delta\)ABC cân ) (1)
IB = IC (\(\Delta\)IBC cân ) (2)
Từ (1) và (2) => AI là đường trung trực của BC ( điểm nằm trên đường trung trực của 1 đoạn thẳng thì cách đều 2 đầu mút )
Chúc bạn học giỏi !!!
làm ơn giúp mik với ai giải đúng mik sẽ tích cho
a,Xét tam giác ABN và tam giác ACM có :
AM=AN (gt)
Góc A chung
AB=AC(gt)
=> tam giác ABN = tam giác ACM (c-g-c)
b,theo câu a =>AMC^=ANB^(1)
Ta có : AM=AN =>tam giác AMN cân tại A => AMN^=ANM^(2)
Từ 1 và 2 =>MNI^=NMI^(3)
Vì B1^=C1^
B^=C^
=>B^-B1^=C-C1^
=>C2^=B2^(4)
Mặt khác : I1^=I2^(đối đỉnh) (5)
Từ 3 ; 4 và 5 => MNI^+NMI^+I1^=180*=I2^+B2^+C2^(tổng 3 góc của 1 tam giác )
=> MNI^+NMI^ / 2 = B2^+C2^ / 2
=> B2^=MNI^
Vì 2 góc này ở vị trí sole trong và bằng nhau
=> MN // BC