Trong không gian với hệ tọa độ Oxyz, phương trình nào sau đây không là phương trình mặt phẳng:
A. x+y=4
B. x+y+z=4
C. x 2 + y 2 + z 2 = 4
D. y+z=4
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng α : x + y - z - 2 = 0 và đường thẳng d : x + 1 2 = y - 1 1 = z - 2 1 Phương trình nào dưới đây là phương trình mặt phẳng chứa đường thẳng (d) và vuông góc với mặt phẳng α
A. x+y-z+2=0
B. 2x-3y-z+7=0
C. x+y+2z-4=0
D. 2x-3y-z-7=0
Đáp án B
Phương pháp giải:
Ứng dụng của tích có hướng để tìm vectơ pháp tuyến của mặt phẳng. Phương trình mặt phẳng đi qua M ( x 0 ; y 0 ; z 0 ) và có VTPT
Lời giải:
Vậy phương trình mặt phẳng (P): 2x-3y-z+7=0
Trong không gian với hệ tọa độ Oxyz phương trình nào dưới đây là phương trình mặt phẳng đi qua điểm M(3;-1;1) và vuông góc với đường thẳng ∆ : x - 1 3 = y + 2 - 2 = z - 3 1 ?
Đáp án C
Mặt phẳng cần tìm vuông góc với ∆ nên nhận vecto chỉ phương của ∆ là (3; -2; 1) làm vecto pháp tuyến.
Phương trình mặt phẳng cần tìm là:
Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng d: x = 2 + 3 t y = - 3 + t z = 4 - 2 t và d': x - 4 3 = y + 1 1 = z - 2 . Phương trình nào dưới đây là phương trình đường thẳng thuộc mặt phẳng chứa d và d’, đồng thời cách đều hai đường thẳng đó.
A. x - 3 3 = y + 2 1 = z - 2 - 2
B. x + 3 3 = y + 2 1 = z + 2 - 2
C. x + 3 3 = y - 2 1 = z + 2 - 2
D. x - 3 3 = y - 2 1 = z - 2 - 2
Đáp án A
Vì hai đường thẳng d và d’ song song với nhau nên đường thẳng a cần tìm cũng song song với 2 đường thẳng nên a nhận u ⇀ =(3;1;-2) làm vecto chỉ phương.
Gọi A(2;-3;4) ∈ d ⇒ phương trình mặt phẳng (P) qua A vuông góc với d là: 3x+y-2z+5=0
Giao điểm H của (P) và d’ là H 4 7 ; - 15 7 ; - 16 7 . khi đó trung điểm của AH là I 9 7 ; - 18 7 ; 6 7
Thay tọa độ điểm I vào xem phương trình nào thỏa mãn.
Trong không gian với hệ tọa độ Oxyz, cho điểm A(0;0;1), B(1;2;3) và mặt phẳng (Q) có phương trình: x+y-z=0. Viết phương trình mặt phẳng (P).
A. − 4 x + 3 y − z + 1 = 0.
B. 4 x + 3 y + z - 1 = 0.
C. 3 y − z + 1 = 0.
D. 4 x + 3 y + 2 = 0.
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): ( x + 1 ) 2 + ( y - 1 ) 2 + ( z + 2 ) 2 = 2 và hai đường thẳng d: x - 2 1 = y 2 = z - 1 - 1 , ∆ : x 1 = y 1 = z - 1 - 1 . Phương trình nào dưới đây là phương trình của một mặt phẳng tiếp xúc với (S), song song với d và ∆ ?
A. x+z+1=0
B. x+y+1=0
C. y+z+3=0
D. x+z-1=0
Đáp án B
Pt pháp tuyến của mặt phẳng cần tìm là n ⇀ = d , ⇀ ∆ ⇀ = (1;0;1)
Pt có dạng: x+z+D=0
Khoảng cách từ O (-1;1;-2) đến mp là 2
⇒ D=1
Pt có dạng : x+z+1=0
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng α : x + y − z − 2 = 0 và đường thẳng d : x + 1 2 = y − 1 1 = z − 2 1 . Phương trình nào dưới đây là phương trình mặt phẳng chứa đường thẳng (d) và vuông góc với mặt phẳng α
A. x + y − z + 2 = 0
B. 2 x − 3 y − z + 7 = 0
C. x + y + 2 z − 4 = 0
D. 2 x − 3 y − z − 7 = 0
Trong không gian với hệ tọa độ Oxyz, cho A(1;0;0),B(0;2;0),C(0;0;3), phương trình nào sau đây là phương trình mặt phẳng .
A. x+y/2+z/3=1
B. 6x+3y+2z+6=0
C. 6x+3y+2z-6=0
D. 12x+6y+4z+12=0
A(1;0;0),B(0;2;0),C(0;0;3), phương trình mặt phẳng là x + y 2 + z 3 = 1 6x+3y+2z-6=0
Đáp án C
Trong không gian với hệ tọa độ Oxyz phương trình nào dưới đây là phương trình của đường thẳng đi qua điểm A(2;3;0) và vuông góc với mặt phẳng (P): x+3y-z+5=0?
Đáp án B
Vì đường thẳng vuông góc với (P) nên nhận vecto pháp tuyến của (P) là (1; 3; -1) làm vecto chỉ phương nên chỉ có đáp án B hoặc C
Thay điểm A (2;3;0) vào thì chỉ có đáp án B thỏa mãn
Trong không gian với hệ toạ độ Oxyz, cho điểm A(1;-2;3) và hai mặt phẳng (P):x+y+z+1=0;(Q):x-y+z-2=0. Phương trình nào dưới đây là phương trình đường thẳng qua A, song song với (P) và (Q).
A. x = 1 + 2 t y = - 2 z = 3 + 2 t
B. x = - 1 + t y = 2 z = - 3 - t
C. x = 1 y = - 2 z = 3 - 2 t
D. x = 1 + t y = - 2 z = 3 - t
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình x − 2 2 = y − 1 1 = z − 1 và mặt phẳng P : − 2 x + y − 2 z + 3 = 0 . Mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ nhất, điểm nào sau đây thuộc mặt phẳng (Q).
A. 1 ; 1 ; 10 13
B. − 2 ; 3 ; 1 10
C. 1 13 ; 2 ; 0
D. 3 10 ; 1 ; − 2
Đáp án A
Khi đó đường thẳng d vuông góc với ∆ tại A. Chọn u d → = u Δ → , n P → = − 1 ; 6 ; 4 .
Như vậy (Q) là mặt phẳng chứa hai đường thẳng cắt nhau a và ∆ .
Do đó (Q) đi qua A và nhận vectơ u Q → = u Δ → , u d → = 10 ; − 7 ; 13 .
Phương trình mặt phẳng Q : 10 x − 2 − 7 y − 1 + 13 z = 0 ⇔ 10 x − 7 y + 13 z − 13 = 0