Cho số phức z thỏa mãn: z = z ¯ - 3 + 4 i Tập hợp các điểm trong mặt phẳng Oxy biểu diễn các số phức z là:
Câu 1 : Cho số phức \(z\) thỏa mãn \(z\) + ( 2 - i )\(\overline{z}\) = 3 - 5i. Môđun của số phức w = \(z \) - i bằng bao nhiêu ?
Câu 2 : Cho số phức \(z\) = a + bi, (a,b ∈ R ) thỏa mãn ( 3 + 2i )\(z\) + ( 2 - i )2 = 4 + i. Tính P = a - b
Cho số phức z thỏa mãn |z| = 5 và |z + 3| = |z + 3 - 10i| .Tính số phức w=z-4+3i
A. W=-4+8i
B. w=1=3i
C. w= -1+7i
D. w=-3+8i
Cho số phức z thỏa mãn điều kiện z - 3 + 2 i = z - i Giả sử w là số phức có môđun nhỏ nhất trong các số phức z thỏa mãn điều kiện trên. Tính môđun của w
Cho số phức z thỏa mãn z + ( 2 + i ) z ¯ = 3 + 5 i . Tính môđun của số phức z.
Cho số phức z thỏa mãn z + 2 + i z ¯ = 3 + 5 i . Tính môđun của số phức z
A. z = 13
B. z = 5
C. z = 13
D. z = 5
Cho số phức z thỏa mãn ( 3 + i ) z - i z = 7 - 6 i . Môđun của số phức z bằng
Cho số phức z thỏa mãn ( 1 - 3i) z là số thực và . Hỏi có bao nhiêu số phức z thỏa mãn
A. 1
B. 2
C. 3
D. 4
Chọn B.
Gọi số phức cần tìm là z = a + bi.
Ta có ( 1 - 3i) z = ( 1 - 3i) ( a + bi)
= a + 3b - 3ai + bi = a + 3b + ( b - 3a) i
+ Do ( 1 - 3i) z là số thực nên b - 3a = 0 hay b = 3a
+ ta có ⇔|a – 2 + (-b + 5)i| = 1
Hay ( a - 2) 2 + ( 5 - 3a) 2 = 1
(thỏa mãn)
Vậy có hai số phức z thỏa mãn là z = 2 + 6i và z = 7/5 + 21/5i
Cho số phức z thỏa mãn z - 4 + 3 i - z ¯ + 4 + 3 i = 10 và z - 3 - 4 i nhỏ nhất. Môđun của số phức z bằng
A. 6
B. 7
C. 5
D. 8
Cho số phức z thỏa mãn (3 + i).z - i.z =7 - 6i Mô đun của số phức z bằng:
A. 25
B. 2 5
C. 5
D. 5
Cho số phức z thỏa mãn z - 1 + 2 i = 3 . Tìm môđun lớn nhất của số phức z - 2 i